Hematologic malignancies often have specific chromosomal translocations that promote cancer initiation and progression. Translocation identification is often vital in the diagnosis, prognosis, and treatment of malignancies. A variety of methods including metaphase cytogenetics, in situ hybridization, microarray techniques, Southern blotting, and many variations of PCR are used to identify translocations.
View Article and Find Full Text PDFPolymorphic short tandem repeat (STR), or microsatellite, loci have been widely used to analyze chimerism status after allogeneic hematopoietic stem cell transplantation. The presence of a patient's DNA, as identified by STR analysis, may indicate residual or recurrent malignant disease or may represent normal hematopoiesis of patient origin. The ratio of patient-derived to donor-derived alleles is used to calculate the relative amount of patient cells (both benign and malignant) to donor cells.
View Article and Find Full Text PDFBackground: Recent data in esophageal cancer suggests the variant allele of a single-nucleotide polymorphism (SNP) in XRCC1 may be associated with resistance to radiochemotherapy. However, this SNP has not been assessed in a histologically homogeneous clinical trial cohort that has been treated with a uniform approach. In addition, whether germline DNA may serve as a surrogate for tumor genotype at this locus is unknown in this disease.
View Article and Find Full Text PDFPCR detection of chromosomal translocations and small insertion/deletion mutations is challenging when potential amplicon size varies greatly. Molecular diagnostic laboratories face such difficulties with the BCL2-IGH translocation in follicular lymphoma and with internal tandem duplication mutation of the FLT3 gene in leukemia, where breakpoints are widely distributed, mutations may be multiple, signal strength is low, and background noise is elevated. We developed a strategy, called Δ-PCR, that ensures PCR specificity and identifies individual breakpoints.
View Article and Find Full Text PDFMutations in codons 12 and 13 of the KRAS oncogene are relatively common in colorectal and lung adenocarcinomas. Recent data indicate that these mutations result in resistance to anti-epidermal growth factor receptor therapy. Therefore, we assessed Sanger sequencing, pyrosequencing, and melting curve analysis for the detection of KRAS codon 12/13 mutations in formalin-fixed paraffin-embedded samples, including 58 primary and 42 metastatic colorectal adenocarcinomas, 63 primary and 17 metastatic lung adenocarcinomas, and 20 normal colon samples.
View Article and Find Full Text PDFGestational trophoblastic neoplasms (GTNs) are a rare group of neoplastic diseases composed of choriocarcinomas, placental site trophoblastic tumors (PSTTs) and epithelioid trophoblastic tumors (ETTs). Since these tumors are derivatives of fetal trophoblastic tissue, approximately 50% of GTN cases are expected to originate from a male conceptus and carry a Y-chromosomal complement according to a balanced sex ratio. To investigate this hypothesis, we carried out a comprehensive analysis by genotyping a relatively large sample size of 51 GTN cases using three independent sex chromosome genetic markers; Amelogenin, Protein Kinase and Zinc Finger have X and Y homologues that are distinguishable by their PCR product size.
View Article and Find Full Text PDFDistinction of hydatidiform moles from non-molar (NM) specimens, as well as their subclassification as complete (CHM) versus partial hydatidiform moles (PHM), is important for clinical management and accurate risk assessment for persistent gestational trophoblastic disease. Because diagnosis of hydatidiform moles based solely on morphology suffers from poor interobserver reproducibility, a variety of ancillary techniques have been developed to improve diagnosis. Immunohistochemical assessment of the paternally imprinted, maternally expressed p57 gene can identify CHMs (androgenetic diploidy) by their lack of p57 expression, but cannot distinguish PHMs (diandric monogynic triploidy) from NMs (biparental diploidy).
View Article and Find Full Text PDFMany molecular diagnostic laboratories have evolved from research laboratories, initially performing low numbers of homebrew assays, but many laboratories now perform more kit-based assays, with ever increasing test volumes. One such assay is assessment of bone marrow transplantation engraftment. Allogeneic bone marrow transplantation is performed primarily in the treatment of hematological malignancies.
View Article and Find Full Text PDFSeveral methods exist to retrieve and purify DNA fragments after agarose or polyacrylamide gel electrophoresis for subsequent analyses. However, molecules present in low concentration and molecules similar in size to their neighbors are difficult to purify. Capillary electrophoresis has become popular in molecular diagnostic laboratories because of its automation, excellent resolution, and high sensitivity.
View Article and Find Full Text PDFMicrosatellite instability (MSI) analysis of colorectal cancers is clinically useful to identify patients with hereditary nonpolyposis colorectal cancer (HNPCC) caused by germline mutations of mismatch repair genes. MSI status may also predict cancer response/resistance to certain chemotherapies. We evaluated the MSI Analysis System (Promega Corp.
View Article and Find Full Text PDFWe present the case of a 6-year-old male who received an allogeneic bone marrow transplant as part of treatment for acute lymphoblastic leukemia. The patient relapsed 5 months after transplantation and received additional chemotherapy. He acquired an angioinvasive fungal infection that required transfusion of granulocytes.
View Article and Find Full Text PDFAdenomatous polyposis coli (APC) is a tumor suppressor gene important in colorectal tumorigenesis. A genetic variant of APC, I1307K, results from a T-to-A transversion at nucleotide 3920 which converts the wild-type sequence to a homopolymer tract (A(8)). The I1307K alteration is not itself oncogenic, but creates a hypermutable region (A(8)) that is prone to frame-shift mutations.
View Article and Find Full Text PDFFLT3 is a receptor tyrosine kinase that is expressed on early hematopoietic progenitor cells and plays an important role in stem cell survival and differentiation. Two different types of functionally important FLT3 mutations have been identified. Internal tandem duplication mutations arise from duplications of the juxtamembrane portion of the gene and result in constitutive activation of the FLT3 protein.
View Article and Find Full Text PDF