Shifts in the environment due to climate change necessitate breeding efforts aimed at adapting wheat to longer, warmer growing seasons. In this study, 21 modern wheat ( L.) cultivars and 29 landraces were screened for flag leaf starch levels, with the goal of identifying a genetic marker for targeted breeding.
View Article and Find Full Text PDFThe phenomenon of preharvest sprouting (PHS), caused by rain after physiological maturity and prior to harvest, negatively affects wheat (Triticum aestivum L.) production and end use. Investigating the genetics that control PHS resistance may result in increased control of seed dormancy.
View Article and Find Full Text PDFThe primary goal of common wheat () breeding is increasing yield without negatively impacting the agronomic traits or product quality. Genetic approaches to improve the yield increasingly target genes that impact the grain weight and number. An energetic trade-off exists between the grain weight and grain number, the result of which is that most genes that increase the grain weight also decrease the grain number.
View Article and Find Full Text PDFPre-harvest sprouting (PHS) of wheat (Triticum aestivum L.) is an important phenomenon that results in weather dependent reductions in grain yield and quality across the globe. Due to the large annual losses, breeding PHS resistant varieties is of great importance.
View Article and Find Full Text PDFThe Reduced Height () genes formed the basis for the green revolution in wheat by decreasing plant height and increasing productive tillers. There are two current widely used mutant alleles, and . Both reduce plant height by 20% and increase seed yield by 5-10%.
View Article and Find Full Text PDFIncreased expression of leaf or seed ADPglucose pyrophosphorylase activity (AGPase) has been shown to increase plant growth. However, no study has directly compared AGPase overexpression in leaves and/or seeds. In the present study, transgenic rice overexpressing AGPase in leaves or in seeds were crossed, resulting in four F2:3 homozygous genotypes with AGPase overexpression in leaves, seeds, both leaves and seeds, or neither tissue.
View Article and Find Full Text PDFThe COP9 (constitutive photomorphogenesis 9) signalosome (CSN) is a protein complex involved in the ubiquitin proteasome system and a common host target of diverse pathogens in Arabidopsis. The known derubylation function of the COP9 complex is carried out by subunit 5 encoded by AtCSN5A or AtCSN5B in Arabidopsis. A single CSN5-like gene (designated as TaCSN5) with three homeologues was identified on the long arms of wheat (Triticum aestivum L.
View Article and Find Full Text PDFWheat leaf rust, stem rust, stripe rust, and powdery mildew caused by the fungal pathogens Puccinia triticina, P. graminis f. sp.
View Article and Find Full Text PDFPlant oil content and composition improvement is a major goal of plant breeding and biotechnology. The Puroindoline a and b (PINA and PINB) proteins together control whether wheat seeds are soft or hard textured and share a similar structure to that of plant non-specific lipid-transfer proteins. Here we transformed corn (Zea mays L.
View Article and Find Full Text PDFThe texture of maize (Zea mays L.) seeds is important to seed processing properties, and soft dent maize is preferred for both wet-milling and livestock feed applications. The puroindoline genes (Pina and Pinb) are the functional components of the wheat (Triticum aestivum L.
View Article and Find Full Text PDFADP-glucose pyrophosphorylase (AGP) is the rate-limiting step in seed starch biosynthesis. Expression of an altered maize AGP large subunit (Sh2r6hs) in wheat (Triticum aestivum L.) results in increased AGP activity in developing seed endosperm and seed yield.
View Article and Find Full Text PDFIn this work we test the hypothesis that yield of rice ( Oryza sativa L.) can be enhanced by increasing endosperm activity of ADP-glucose pyrophosphorylase (AGP), a key enzyme in starch biosynthesis. The potential for increases in yield exist because rice initiates more seeds than are taken to maturity and possesses excess photosynthetic capacity that could be utilized if there were more demand for assimilate.
View Article and Find Full Text PDFThe maize mutation sh2-7527 was isolated in a conventional maize breeding program in the 1970s. Although the mutant contains foreign sequences within the gene, the mutation is not attributable to an interchromosomal exchange or to a chromosomal inversion. Hence, the mutation was caused by an insertion.
View Article and Find Full Text PDFYield in cereals is a function of seed number and weight; both parameters are largely controlled by seed sink strength. The allosteric enzyme ADP-glucose pyrophosphorylase (AGP) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed sink strength. Plant AGPs are heterotetrameric, consisting of two large and two small subunits.
View Article and Find Full Text PDF