Publications by authors named "Michael J Giffin"

Purpose: Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a high relapse rate, limited therapeutic options, and poor prognosis. We investigated the antitumor activity of AMG 757, a half-life extended bispecific T-cell engager molecule targeting delta-like ligand 3 (DLL3)-a target that is selectively expressed in SCLC tumors, but with minimal normal tissue expression.

Experimental Design: AMG 757 efficacy was evaluated in SCLC cell lines and in orthotopic and patient-derived xenograft (PDX) mouse SCLC models.

View Article and Find Full Text PDF

The field of human therapeutics has expanded tremendously from small molecules to complex biological modalities, and this trend has accelerated in the last two decades with a greater diversity in the types and applications of novel modalities, accompanied by increasing sophistication in drug delivery technology. These innovations have led to a corresponding increase in the number of therapies seeking regulatory approval, and as the industry continues to evolve regulations will need to adapt to the ever-changing landscape. The growth in this field thus represents a challenge for regulatory authorities as well as for sponsors.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) accounts for approximately 15% of all lung cancers. Despite high rates of response to first-line chemotherapy and radiotherapy, patients with extensive-stage disease eventually relapse, and very few patients survive more than 5 years from diagnosis. Treatment options for recurrent or refractory disease are limited, and the treatments that do exist are associated with significant treatment-related toxicities.

View Article and Find Full Text PDF

Clinically approved inhibitors of the HIV-1 protease function via a competitive mechanism. A particular vulnerability of competitive inhibitors is their sensitivity to increases in substrate concentration, as may occur during virion assembly, budding and processing into a mature infectious viral particle. Advances in chemical synthesis have led to the development of new high-diversity chemical libraries using rapid in-solution syntheses.

View Article and Find Full Text PDF

Treatment with HIV-1 protease inhibitors, a component of highly active antiretroviral therapy (HAART), often results in viral resistance. Structural and biochemical characterization of a 6X protease mutant arising from in vitro selection with compound 1, a C 2-symmetric diol protease inhibitor, has been previously described. We now show that compound 2, a copper(I)-catalyzed 1,2,3-triazole derived compound previously shown to be potently effective against wild-type protease (IC 50 = 6.

View Article and Find Full Text PDF

The host factor, nuclear factor of activated T-cells (NFAT), regulates the transcription and replication of HIV-1. Here, we have determined the crystal structure of the DNA binding domain of NFAT bound to the HIV-1 long terminal repeat (LTR) tandem kappaB enhancer element at 3.05 A resolution.

View Article and Find Full Text PDF

DNA binding by NFAT1 as a dimer has been implicated in the activation of host and viral genes. Here we report a crystal structure of NFAT1 bound cooperatively as a dimer to the highly conserved kappa B site from the human immunodeficiency virus 1 (HIV-1) long terminal repeat (LTR). This structure reveals a new mode of dimerization and protein-DNA recognition by the Rel homology region (RHR) of NFAT1.

View Article and Find Full Text PDF