The prevalence of ErbB2 amplification in breast cancer has resulted in the heavy pursuit of ErbB2 as a therapeutic target. Although both the ErbB2 monoclonal antibody trastuzumab and ErbB1/ErbB2 dual kinase inhibitor lapatinib have met with success in the clinic, many patients fail to benefit. In addition, the majority of patients who initially respond will unfortunately ultimately progress on these therapies.
View Article and Find Full Text PDFA non-immune library of human single chain fragment variable (scFv) antibodies displayed on Saccharomyces cerevisiae was screened for binding to the Clostridium botulinum neurotoxin serotype A binding domain [BoNT/A (Hc)] with the goal of identifying scFv to novel epitopes. To do this, an antibody-mediated labeling strategy was used in which antigen-binding yeast clones were selected after labeling with previously characterized monoclonal antibodies (MAbs) specific to the Hc. Twenty unique scFv clones were isolated that bound Hc.
View Article and Find Full Text PDFThe signaling network downstream of the ErbB family of receptors has been extensively targeted by cancer therapeutics; however, understanding the relative importance of the different components of the ErbB network is nontrivial. To explore the optimal way to therapeutically inhibit combinatorial, ligand-induced activation of the ErbB-phosphatidylinositol 3-kinase (PI3K) axis, we built a computational model of the ErbB signaling network that describes the most effective ErbB ligands, as well as known and previously unidentified ErbB inhibitors. Sensitivity analysis identified ErbB3 as the key node in response to ligands that can bind either ErbB3 or EGFR (epidermal growth factor receptor).
View Article and Find Full Text PDFTwo immunoassay platforms were developed for either the sensitive or rapid detection of botulinum neurotoxin A (BoNT/A), using high-affinity recombinant monoclonal antibodies against the receptor binding domain of the heavy chain of BoNT/A. These antibodies also bind the same epitopes of the receptor binding domain present on a nontoxic recombinant heavy chain fragment used for assay development and testing in the current study. An enzyme-linked immunosorbent assay (ELISA) microarray using tyramide amplification for localized labeling was developed for the specific and sensitive detection of BoNT.
View Article and Find Full Text PDFYeast display is a powerful tool for increasing the affinity and thermal stability of scFv antibodies through directed evolution. Mammalian calmodulin (CaM) is a highly conserved signaling protein that undergoes structural changes upon Ca(2+) binding. In an attempt to generate conformation-specific antibodies for proteomic applications, a selection against CaM was undertaken.
View Article and Find Full Text PDFSingle chain (scFv) antibodies are used as affinity reagents for diagnostics, therapeutics, and proteomic analyses. The antibody discovery platform we use to identify novel antigen binders involves discovery, characterization, and production. The discovery and characterization components have previously been characterized but in order to fully utilize the capabilities of affinity reagents from our yeast surface display library, efforts were focused on developing a production component to obtain purified, soluble, and active scFvs.
View Article and Find Full Text PDFJ Immunol Methods
July 2004
Yeast display of antibody fragments has proven to be an efficient and productive means for directed evolution of single-chain Fv (scFv) antibodies for increased affinity and thermal stability and, more recently, for the display and screening of a non-immune scFv and immune Fab libraries. A major strength of yeast display as a novel antibody discovery platform is the ability to characterize the binding properties, i.e.
View Article and Find Full Text PDFYeast display of antibody fragments has proven to be an efficient and productive means for directed evolution of single chain Fv antibodies for increased affinity and thermal stability, and more recently for the display and screening of a non-immune library. In this paper, we describe an elegant and simple method for constructing large combinatorial Fab libraries for display on the surface of Saccharomyces cerevisiae, from modestly sized, and easily constructed, heavy and light chain libraries. To this end, we have constructed a set of yeast strains and a two vector system for heavy chain and light chain surface display of Fab fragments with free native amino termini.
View Article and Find Full Text PDFIn order to more productively utilize the rich source of antigen-specific reagents present in the previously described non-immune single chain fragment variable (scFv) yeast display library, one must be able to efficiently isolate and characterize clones within the library. To this end, we have developed and validated a magnetic bead sorting technique utilizing the Miltenyi Macs system to recover greater than 90% of the antigen-specific clones present in the library. In combination with flow cytometry, we rapidly reduced diversity and enriched for antigen-specific clones in three rounds of selection.
View Article and Find Full Text PDFA nonimmune library of 10(9) human antibody scFv fragments has been cloned and expressed on the surface of yeast, and nanomolar-affinity scFvs routinely obtained by magnetic bead screening and flow-cytometric sorting. The yeast library can be amplified 10(10)-fold without measurable loss of clonal diversity, allowing its effectively indefinite expansion. The expression, stability, and antigen-binding properties of >50 isolated scFv clones were assessed directly on the yeast cell surface by immunofluorescent labeling and flow cytometry, obviating separate subcloning, expression, and purification steps and thereby expediting the isolation of novel affinity reagents.
View Article and Find Full Text PDFFrom libraries of peptides and protein fragments, several inhibitors that block pheromone response in Saccharomyces cerevisiae have been isolated previously. In many cases, the inhibitors are displayed as part of a scaffold, such as green fluorescent protein. Each of the inhibitors has a characteristic physiological strength or genetic penetrance.
View Article and Find Full Text PDFCeramide levels increase in activated polymorphonuclear neutrophils, and here we show that endogenous ceramide induced degranulation and superoxide generation and increased surface beta(2)-integrin expression. Ceramide accumulation reveals a bifurcation in integrin function, as it abolished agonist-induced adhesion to planar surfaces, yet had little effect on homotypic aggregation. We increased cellular ceramide content by treating polymorphonuclear neutrophils with sphingomyelinase C and controlled for loss of sphingomyelin by pretreatment with sphingomyelinase D to generate ceramide phosphate, which is not a substrate for sphingomyelinase C.
View Article and Find Full Text PDF