Publications by authors named "Michael J Eggertson"

A major component of a hydrogen exchange mass spectrometry experiment is the analysis of protein and peptide mass spectra to yield information about deuterium incorporation. The processing of data that are produced includes the identification of each peptic peptide to create a master table/array of peptide identity that typically includes sequence, retention time and retention time range, mass range, and undeuterated mass. The amount of deuterium incorporated into each of the peptides in this array must then be determined.

View Article and Find Full Text PDF

Hydrogen deuterium exchange mass spectrometry (HDX MS) reports on the conformational landscape of proteins by monitoring the exchange between backbone amide hydrogen atoms and deuterium in the solvent. To maintain the label for analysis, quench conditions of low temperature and pH are required during the chromatography step performed after protease digestion but before mass spectrometry. Separation at 0°C is often chosen as this is the temperature where the most deuterium can be recovered without freezing of the typical water and acetonitrile mobile phases.

View Article and Find Full Text PDF

A major component of a hydrogen exchange mass spectrometry experiment is the analysis of protein and peptide mass spectra to yield information about deuterium incorporation. The processing of data that are produced includes the identification of each peptic peptide to create a master table/array of peptide sequence, retention time and retention time range, mass range, and undeuterated mass. The amount of deuterium incorporated into each of the peptides in this array must then be determined.

View Article and Find Full Text PDF

We report the one- and two-dimensional (1-D and 2-D) capillary electrophoresis separation of Deinococcus radiodurans protein homogenate. Proteins are labeled with the fluorogenic reagent 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ), which reacts with lysine residues and creates a highly fluorescent product. Detection is by laser-induced fluorescence.

View Article and Find Full Text PDF

We report a system for automated protein analysis. In the system, proteins are labeled with the fluorogenic reagent 3-(2-furoyl)quinoline-2-carboxaldehyde, which reacts with lysine residues and creates a highly fluorescent product. These labeled proteins are analyzed by submicellar capillary electrophoresis at pH 7.

View Article and Find Full Text PDF