The signal regulatory protein α (SIRPα)/CD47 axis has emerged as an important innate immune checkpoint that enables cancer cell escape from macrophage phagocytosis. SIRPα expression is limited to macrophages, dendritic cells, and neutrophils-cells enriched in the tumor microenvironment. In this study, we present novel anti-SIRP Abs, SIRP-1 and SIRP-2, as an approach to targeting the SIRPα/CD47 axis.
View Article and Find Full Text PDFInhibitors of adaptive immune checkpoints have shown promise as cancer treatments. CD47 is an innate immune checkpoint receptor broadly expressed on normal tissues and overexpressed on many tumors. Binding of tumor CD47 to signal regulatory protein alpha (SIRPα) on macrophages and dendritic cells triggers a "don't eat me" signal that inhibits phagocytosis enabling escape of innate immune surveillance.
View Article and Find Full Text PDFCTL based vaccine strategies in the macaque model of AIDS have shown promise in slowing the progression to disease. However, rapid CTL escape viruses can emerge rendering such vaccination useless. We hypothesized that such escape is made more difficult if the immunizing CTL epitope falls within a region of the virus that has a high density of overlapping reading frames which encode several viral proteins.
View Article and Find Full Text PDFGBV-C virus infection has been linked to improved clinical outcome in HIV-1 co-infected individuals. The epidemiology of GBV-C has, thus far, been limited to the gay male, HIV+ population. Here we describe the prevalence of antibodies against GBV-C envelope glycoprotein E2 and GBV-C viremia in an HIV+ inner city population.
View Article and Find Full Text PDF