Soil microbiome disruption methods are regularly used to reduce populations of microbial pathogens, often resulting in increased crop growth. However, little is known about the effect of soil microbiome disruption on non-pathogenic members of the soil microbiome. Here, we applied soil microbiome disruption in the form of moist-heat sterilization (autoclaving) to reduce populations of naturally occurring soil microbiota.
View Article and Find Full Text PDFPlant root exudation has long been recognized as a vital communication system between plants and microbial communities populating the rhizosphere. Due to the high complexity of the collection process and analysis, a variety of techniques have been developed to mimic natural exudation conditions. In addition, significant progress improving existing techniques and developing new methodologies of root exudate collection and analysis have been made.
View Article and Find Full Text PDFKlebsiella pneumoniae was isolated from infected pupae of Galleria mellonella and Pseudomonas aeruginosa was isolated from the entomopathogenic nematode Heterorhabditis bacteriophora hosted within the pupae of G. mellonella. Insect consumption and surface application of P.
View Article and Find Full Text PDFRoot-knot nematodes (RKN) such as Meloidogyne spp. are among the most detrimental pests in agriculture affecting several crops. New methodologies to manage RKN are needed such as efficient discovery of nematophagous microbes.
View Article and Find Full Text PDF