Publications by authors named "Michael J Chao"

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk.

View Article and Find Full Text PDF

The age at onset of motor symptoms in Huntington's disease (HD) is driven by HTT CAG repeat length but modified by other genes. In this study, we used exome sequencing of 683 patients with HD with extremes of onset or phenotype relative to CAG length to identify rare variants associated with clinical effect. We discovered damaging coding variants in candidate modifier genes identified in previous genome-wide association studies associated with altered HD onset or severity.

View Article and Find Full Text PDF

An increasing number of identified Parkinson's disease (PD) risk loci contain genes highly expressed in innate immune cells, yet their role in pathology is not understood. We hypothesize that PD susceptibility genes modulate disease risk by influencing gene expression within immune cells. To address this, we have generated transcriptomic profiles of monocytes from 230 individuals with sporadic PD and healthy subjects.

View Article and Find Full Text PDF

Identification of causal variants and genes underlying genome-wide association study (GWAS) loci is essential to understand the biology of alcohol use disorder (AUD) and drinks per week (DPW). Multi-omics integration approaches have shown potential for fine mapping complex loci to obtain biological insights to disease mechanisms. In this study, we use multi-omics approaches, to fine-map AUD and DPW associations at single SNP resolution to demonstrate that rs56030824 on chromosome 11 significantly reduces SPI1 mRNA expression in myeloid cells and lowers risk for AUD and DPW.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is caused by an expanded (>35) CAG trinucleotide repeat in huntingtin (HTT). Age-at-onset of motor symptoms is inversely correlated with the size of the inherited CAG repeat, which expands further in brain regions due to somatic repeat instability. Our recent genetic investigation focusing on autosomal SNPs revealed that age-at-onset is also influenced by genetic variation at many loci, the majority of which encode genes involved in DNA maintenance/repair processes and repeat instability.

View Article and Find Full Text PDF

A recent genome-wide association study of Huntington disease (HD) implicated genes involved in DNA maintenance processes as modifiers of onset, including multiple genome-wide significant signals in a chr15 region containing the DNA repair gene Fanconi-Associated Nuclease 1 (FAN1). Here, we have carried out detailed genetic, molecular, and cellular investigation of the modifiers at this locus. We find that missense changes within or near the DNA-binding domain (p.

View Article and Find Full Text PDF

Background: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the HTT gene. It is diagnosed following a standardized examination of motor control and often presents with cognitive decline and psychiatric symptoms. Recent studies have detected genetic loci modifying the age at onset of motor symptoms in HD, but genetic factors influencing cognitive and psychiatric presentations are unknown.

View Article and Find Full Text PDF

Background: Studies suggest that alcohol consumption and alcohol use disorders have distinct genetic backgrounds.

Methods: We examined whether polygenic risk scores (PRS) for consumption and problem subscales of the Alcohol Use Disorders Identification Test (AUDIT-C, AUDIT-P) in the UK Biobank (UKB; N = 121 630) correlate with alcohol outcomes in four independent samples: an ascertained cohort, the Collaborative Study on the Genetics of Alcoholism (COGA; N = 6850), and population-based cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC; N = 5911), Generation Scotland (GS; N = 17 461), and an independent subset of UKB (N = 245 947). Regression models and survival analyses tested whether the PRS were associated with the alcohol-related outcomes.

View Article and Find Full Text PDF

Autopsy measures of Alzheimer's disease neuropathology have been leveraged as endophenotypes in previous genome-wide association studies (GWAS). However, despite evidence of sex differences in Alzheimer's disease risk, sex-stratified models have not been incorporated into previous GWAS analyses. We looked for sex-specific genetic associations with Alzheimer's disease endophenotypes from six brain bank data repositories.

View Article and Find Full Text PDF

Age at onset of Huntington disease, an inherited neurodegenerative disorder, is influenced by the size of the disease-causing CAG trinucleotide repeat expansion in HTT and by genetic modifier loci on chromosomes 8 and 15. Stratifying by modifier genotype, we have examined putamen volume, total motor score (TMS), and symbol digit modalities test (SDMT) scores, both at study entry and longitudinally, in normal controls and CAG-expansion carriers who were enrolled prior to the emergence of manifest HD in the PREDICT-HD study. The modifiers, which included onset-hastening and onset-delaying alleles on chromosome 15 and an onset-hastening allele on chromosome 8, revealed no major effect in controls but distinct patterns of modification in prediagnosis HD subjects.

View Article and Find Full Text PDF

Cerebrospinal fluid (CSF) levels of amyloid-β 42 (Aβ42) and tau have been evaluated as endophenotypes in Alzheimer's disease (AD) genetic studies. Although there are sex differences in AD risk, sex differences have not been evaluated in genetic studies of AD endophenotypes. We performed sex-stratified and sex interaction genetic analyses of CSF biomarkers to identify sex-specific associations.

View Article and Find Full Text PDF

Modifiers of Mendelian disorders can provide insights into disease mechanisms and guide therapeutic strategies. A recent genome-wide association (GWA) study discovered genetic modifiers of Huntington's disease (HD) onset in Europeans. Here, we performed whole genome sequencing and GWA analysis of a Venezuelan HD cluster whose families were crucial for the original mapping of the HD gene defect.

View Article and Find Full Text PDF

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in HTT. Many clinical characteristics of HD such as age at motor onset are determined largely by the size of HTT CAG repeat. However, emerging evidence strongly supports a role for other genetic factors in modifying the disease pathogenesis driven by mutant huntingtin.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat in HTT, resulting in an extended polyglutamine tract in huntingtin. We and others have previously determined that the HD-causing expansion occurs on multiple different haplotype backbones, reflecting more than one ancestral origin of the same type of mutation. In view of the therapeutic potential of mutant allele-specific gene silencing, we have compared and integrated two major systems of HTT haplotype definition, combining data from 74 sequence variants to identify the most frequent disease-associated and control chromosome backbones and revealing that there is potential for additional resolution of HD haplotypes.

View Article and Find Full Text PDF

A comprehensive genetics-based precision medicine strategy to selectively and permanently inactivate only mutant, not normal allele, could benefit many dominantly inherited disorders. Here, we demonstrate the power of our novel strategy of inactivating the mutant allele using haplotype-specific CRISPR/Cas9 target sites in Huntington's disease (HD), a late-onset neurodegenerative disorder due to a toxic dominant gain-of-function CAG expansion mutation. Focusing on improving allele specificity, we combined extensive knowledge of huntingtin (HTT) gene haplotype structure with a novel personalized allele-selective CRISPR/Cas9 strategy based on Protospacer Adjacent Motif (PAM)-altering SNPs to target patient-specific CRISPR/Cas9 sites, aiming at the mutant HTT allele-specific inactivation for a given diplotype.

View Article and Find Full Text PDF

Huntington disease (HD) reflects the dominant consequences of a CAG-repeat expansion in HTT. Analysis of common SNP-based haplotypes has revealed that most European HD subjects have distinguishable HTT haplotypes on their normal and disease chromosomes and that ∼50% of the latter share the same major HD haplotype. We reasoned that sequence-level investigation of this founder haplotype could provide significant insights into the history of HD and valuable information for gene-targeting approaches.

View Article and Find Full Text PDF

Objective: To identify rare variants contributing to multiple sclerosis (MS) susceptibility in a family we have previously reported with up to 15 individuals affected across 4 generations.

Methods: We performed exome sequencing in a subset of affected individuals to identify novel variants contributing to MS risk within this unique family. The candidate variant was genotyped in a validation cohort of 2,104 MS trio families.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is determined by interactions between genes and environment and the influence of vitamin D adequacy has been proposed. Previous studies have shown that serum 25-hydroxyvitamin D (25(OH)D) levels are genetically influenced. Polymorphisms in vitamin D pathway genes are candidates for association with MS susceptibility.

View Article and Find Full Text PDF

Multiple sclerosis (MS) susceptibility is characterized by maternal parent-of-origin effects and increased female penetrance. In 7796 individuals from 1797 MS families (affected individuals n = 2954), we further implicate epigenetic modifications within major histocompatibility complex (MHC) class II haplotypes as mediating these phenomena. Affected individuals with the main MS-associated allele HLA-DRB1*15 had a higher female-to-male ratio versus those lacking it (P = 0.

View Article and Find Full Text PDF

Multiple sclerosis (MS), a common central nervous system inflammatory disease, has a major heritable component. Susceptibility is associated with the MHC class II region, especially HLA-DRB5*0101-HLA-DRB1*1501-HLA-DQA1*0102-HLA-DQB1*0602 haplotypes(hereafter DR2), which dominate genetic contribution to MS risk. Marked linkage disequilibrium (LD) among these loci makes identification of a specific locus difficult.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a complex trait in which allelic variation in the MHC class II region exerts the single strongest effect on genetic risk. Epidemiological data in MS provide strong evidence that environmental factors act at a population level to influence the unusual geographical distribution of this disease. Growing evidence implicates sunlight or vitamin D as a key environmental factor in aetiology.

View Article and Find Full Text PDF

Multiple sclerosis (MS) susceptibility demonstrates a complex pattern of inheritance. Haplotypes containing HLA-DRB1*1501 carry most of the genetic risk. Epidemiological evidence implicating epigenetic factors includes complex distortion of disease transmission seen in aunt/uncle-niece/nephew (AUNN) pairs.

View Article and Find Full Text PDF

The major locus for multiple sclerosis (MS) susceptibility is located within the class II region of the Major Histocompatibility Complex (MHC). HLA-DRB1 alleles, constituting the strongest MS susceptibility factors, have been widely exploited in research including construction of transgenic animal models of MS. Many studies have concluded that HLA-DRB1*15 allele itself determines MS-associated susceptibility.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) risk is determined by both genes and environment. One of the most striking features of MS is its geographic distribution, particularly the pattern of high MS frequency in areas with low sunlight exposure, the main inducer of vitamin D synthesis. Recent epidemiologic, experimental, and clinical evidence support an effect for low environmental supplies of vitamin D in mediating an increased susceptibility to MS.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a complex trait in which alleles at or near the class II loci HLA-DRB1 and HLA-DQB1 contribute significantly to genetic risk. The MHC class II transactivator (MHC2TA) is the master controller of expression of class II genes, and methylation of the promoter of this gene has been previously been shown to alter its function. In this study we sought to assess whether or not methylation of the MHC2TA promoter pIV could contribute to MS disease aetiology.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvglla2s5v9kq29m6mumaqmk77kgtqqc0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once