Publications by authors named "Michael J Capeness"

Article Synopsis
  • Metals are limited resources that are becoming harder to find as demand for them grows, causing scarcity issues worldwide.
  • There are places with dangerous levels of metal pollution, and metals are wasted throughout their lifecycle from extraction to use.
  • New technologies, especially those involving biology and synthetic biology, are being developed to recover metals safely and reduce pollution, which is a more eco-friendly approach.
View Article and Find Full Text PDF

Bacteria are preyed upon by diverse microbial predators, including bacteriophage and predatory bacteria, such as While bacteriophage are used as antimicrobial therapies in Eastern Europe and are being applied for compassionate use in the United States, predatory bacteria are only just beginning to reveal their potential therapeutic uses. However, predation by either predator type can falter due to different adaptations arising in the prey bacteria. When testing poultry farm wastewater for novel isolates on prey lawns, individual composite plaques were isolated containing both an RTP (rosette-tailed-phage)-like-phage and a strain and showing central prey lysis and halos of extra lysis.

View Article and Find Full Text PDF

Platinum and palladium are much sought-after metals of critical global importance in terms of abundance and availability. At the nano-scale these metals are of even higher value due to their catalytic abilities for industrial applications. is able to capture ionic forms of both of these metals, reduce them and synthesize elemental nanoparticles.

View Article and Find Full Text PDF

Biogenic nanoparticles present a wide range of possibilities for use in industrial applications, their production is greener, they can be manufactured using impure feedstocks, and often have different catalytic abilities compared to their chemically made analogs. Nanoparticles of Ag, Pd, Pt, and the bi-elemental PdPt were produced by and and were shown to be able to reduce 4-nitrophenol, an industrial and toxic pollutant. Nanoparticles were recovered post-reaction and then reused, thus demonstrating continued activity.

View Article and Find Full Text PDF

Bdellovibrio bacteriovorus is an unusual δ-proteobacterium that invades and preys on other Gram-negative bacteria and is of potential interest as a whole cell therapeutic against pathogens of man, animals and crops. PTPs (protein tyrosine phosphatases) are an important class of enzyme involved in desphosphorylating a variety of substrates, often with implications in cell signaling. The B.

View Article and Find Full Text PDF

Bdellovibrio bacteriovorus are facultatively predatory bacteria that grow within gram-negative prey, using pili to invade their periplasmic niche. They also grow prey-independently on organic nutrients after undergoing a reversible switch. The nature of the growth switching mechanism has been elusive, but several independent reports suggested mutations in the hit (host-interaction) locus on the Bdellovibrio genome were associated with the transition to prey-independent growth.

View Article and Find Full Text PDF

Background: Evolution equipped Bdellovibrio bacteriovorus predatory bacteria to invade other bacteria, digesting and replicating, sealed within them thus preventing nutrient-sharing with organisms in the surrounding environment. Bdellovibrio were previously described as "obligate predators" because only by mutations, often in gene bd0108, are 1 in ~1x10(7) of predatory lab strains of Bdellovibrio converted to prey-independent growth. A previous genomic analysis of B.

View Article and Find Full Text PDF

Unlabelled: Cyclic-di-GMP is a near-ubiquitous bacterial second messenger that is important in localized signal transmission during the control of various processes, including virulence and switching between planktonic and biofilm-based lifestyles. Cyclic-di-GMP is synthesized by GGDEF diguanylate cyclases and hydrolyzed by EAL or HD-GYP phosphodiesterases, with each functional domain often appended to distinct sensory modules. HD-GYP domain proteins have resisted structural analysis, but here we present the first structural representative of this family (1.

View Article and Find Full Text PDF

Bdellovibrio bacteriovorus is a bacterium which preys upon and kills Gram-negative bacteria, including the zoonotic pathogens Escherichia coli and Salmonella. Bdellovibrio has potential as a biocontrol agent, but no reports of it being tested in living animals have been published, and no data on whether Bdellovibrio might spread between animals are available. In this study, we tried to fill this knowledge gap, using B.

View Article and Find Full Text PDF

Bdellovibrio bacteriovorus is a Gram-negative bacterium that is a pathogen of other Gram-negative bacteria, including many bacteria which are pathogens of humans, animals and plants. As such Bdellovibrio has potential as a biocontrol agent, or living antibiotic. B.

View Article and Find Full Text PDF