The retina is an intricately organized neural tissue built on cone and rod pathways for color and night vision. Genetic mutations that disrupt the proper function of the rod circuit contribute to blinding diseases including retinitis pigmentosa and congenital stationary night blindness (CSNB). Down Syndrome cell adhesion molecule like 1 (Dscaml1) is expressed by rods, rod bipolar cells (RBCs), and sub-populations of amacrine cells, and has been linked to a middle age onset of CSNB in humans.
View Article and Find Full Text PDFIn vitro differentiation of human pluripotent stem cells (hPSCs) into specialized tissues and organs represents a powerful approach to gain insight into those cellular and molecular mechanisms regulating human development. Although normal embryonic eye development is a complex process, generation of ocular organoids and specific ocular tissues from pluripotent stem cells has provided invaluable insights into the formation of lineage-committed progenitor cell populations, signal transduction pathways, and self-organization principles. This review provides a comprehensive summary of recent advances in generation of adenohypophyseal, olfactory, and lens placodes, lens progenitor cells and three-dimensional (3D) primitive lenses, "lentoid bodies", and "micro-lenses".
View Article and Find Full Text PDFUndergraduate student engagement in research increases retention and degree completion, especially for students who are underrepresented in science. Several approaches have been adopted to increase research opportunities including curriculum based undergraduate research opportunities (CUREs), in which research is embedded into course content. Here we report on efforts to tackle a different challenge: providing research opportunities to students engaged in remote learning or who are learning at satellite campuses or community colleges with limited research infrastructure.
View Article and Find Full Text PDFThe neural retina is organized along central-peripheral, dorsal-ventral, and laminar planes. Cellular density and distributions vary along the central-peripheral and dorsal-ventral axis in species including primates, mice, fish, and birds. Differential distribution of cell types within the retina is associated with sensitivity to different types of damage that underpin major retinal diseases, including macular degeneration and glaucoma.
View Article and Find Full Text PDFNeural circuits in the adult nervous system are characterized by stable, cell type-specific patterns of synaptic connectivity. In many parts of the nervous system these patterns are established during development through initial over-innervation by multiple pre- or postsynaptic targets, followed by a process of refinement that takes place during development and is in many instances activity dependent. Here we report on an identified synapse in the mouse retina, the cone photoreceptor➔type 4 bipolar cell (BC4) synapse, and show that its development is distinctly different from the common motif of over-innervation followed by refinement.
View Article and Find Full Text PDF