Loss of muscle mass is a feature of chronic illness and aging. Here, we report that skeletal muscle-specific thrombospondin-1 transgenic mice (Thbs1 Tg) have profound muscle atrophy with age-dependent decreases in exercise capacity and premature lethality. Mechanistically, Thbs1 activates transforming growth factor β (TGFβ)-Smad2/3 signaling, which also induces activating transcription factor 4 (ATF4) expression that together modulates the autophagy-lysosomal pathway (ALP) and ubiquitin-proteasome system (UPS) to facilitate muscle atrophy.
View Article and Find Full Text PDFMitochondrial Ca overload can mediate mitochondria-dependent cell death, a major contributor to several human diseases. Indeed, Duchenne muscular dystrophy (MD) is driven by dysfunctional Ca influx across the sarcolemma that causes mitochondrial Ca overload, organelle rupture, and muscle necrosis. The mitochondrial Ca uniporter (MCU) complex is the primary characterized mechanism for acute mitochondrial Ca uptake.
View Article and Find Full Text PDFMitochondria use the electron transport chain to generate high-energy phosphate from oxidative phosphorylation, a process also regulated by the mitochondrial Ca uniporter (MCU) and Ca levels. Here, we show that MCUb, an inhibitor of MCU-mediated Ca influx, is induced by caloric restriction, where it increases mitochondrial fatty acid utilization. To mimic the fasted state with reduced mitochondrial Ca influx, we generated genetically altered mice with skeletal muscle-specific MCUb expression that showed greater fatty acid usage, less fat accumulation, and lower body weight.
View Article and Find Full Text PDFMitochondrial permeability transition pore (MPTP) formation contributes to ischemia-reperfusion injury in the heart and several degenerative diseases, including muscular dystrophy (MD). MD is a family of genetic disorders characterized by progressive muscle necrosis and premature death. It has been proposed that the MPTP has two molecular components, the adenine nucleotide translocase (ANT) family of proteins and an unknown component that requires the chaperone cyclophilin D (CypD) to activate.
View Article and Find Full Text PDFThe adenosine nucleotide translocase (ANT) family of proteins are inner mitochondrial membrane proteins involved in energy homeostasis and cell death. The primary function of ANT proteins is to exchange cytosolic ADP with matrix ATP, facilitating the export of newly synthesized ATP to the cell while providing new ADP substrate to the mitochondria. As such, the ANT proteins are central to maintaining energy homeostasis in all eukaryotic cells.
View Article and Find Full Text PDFRationale: Mitochondrial Ca loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca uniporter) mediates mitochondrial Ca influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit.
View Article and Find Full Text PDFIschemia/reperfusion (I/R) injury is mediated in large part by opening of the mitochondrial permeability transition pore (PTP). Consequently, inhibitors of the PTP hold great promise for the treatment of a variety of cardiovascular disorders. At present, PTP inhibition is obtained only through the use of drugs (e.
View Article and Find Full Text PDFThe mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three genes, we reinvestigated whether the ANTs comprise the MPTP.
View Article and Find Full Text PDFThe mitochondrial Ca2+ uniporter (MCU) complex mediates acute mitochondrial Ca2+ influx. In skeletal muscle, MCU links Ca2+ signaling to energy production by directly enhancing the activity of key metabolic enzymes in the mitochondria. Here, we examined the role of MCU in skeletal muscle development and metabolic function by generating mouse models for the targeted deletion of Mcu in embryonic, postnatal, and adult skeletal muscle.
View Article and Find Full Text PDFCardiac ryanodine receptor (Ryr2) Ca release channels and cellular metabolism are both disrupted in heart disease. Recently, we demonstrated that total loss of Ryr2 leads to cardiomyocyte contractile dysfunction, arrhythmia, and reduced heart rate. Acute total Ryr2 ablation also impaired metabolism, but it was not clear whether this was a cause or consequence of heart failure.
View Article and Find Full Text PDFPancreatic β cells are mostly post-mitotic, but it is unclear what locks them in this state. Perturbations including uncontrolled hyperglycemia can drive β cells into more pliable states with reduced cellular insulin levels, increased β cell proliferation, and hormone mis-expression, but it is unknown whether reduced insulin production itself plays a role. Here, we define the effects of ∼50% reduced insulin production in Ins1(-/-):Ins2(f/f):Pdx1Cre(ERT):mTmG mice prior to robust hyperglycemia.
View Article and Find Full Text PDFA large genomic deletion in human cardiac ryanodine receptor (RYR2) gene has been detected in a number of unrelated families with various clinical phenotypes, including catecholaminergic polymorphic ventricular tachycardia (CPVT). This genomic deletion results in an in-frame deletion of exon-3 (Ex3-del). To understand the underlying disease mechanism of the RyR2 Ex3-del mutation, we generated a mouse model in which the RyR2 exon-3 sequence plus 15-bp intron sequences flanking exon-3 were deleted.
View Article and Find Full Text PDFObjective: During diabetes mellitus, coronary lipoprotein lipase increases to promote the predominant use of fatty acids. We have reported that high glucose stimulates active heparanase secretion from endothelial cells to cleave cardiomyocyte heparan sulfate and release bound lipoprotein lipase for transfer to the vascular lumen. In the current study, we examined whether heparanase also has a function to release cardiomyocyte vascular endothelial growth factor (VEGF), and whether this growth factor influences cardiomyocyte fatty acid delivery in an autocrine manner.
View Article and Find Full Text PDFCa(2+) fluxes between adjacent organelles are thought to control many cellular processes, including metabolism and cell survival. In vitro evidence has been presented that constitutive Ca(2+) flux from intracellular stores into mitochondria is required for basal cellular metabolism, but these observations have not been made in vivo. We report that controlled in vivo depletion of cardiac RYR2, using a conditional gene knock-out strategy (cRyr2KO mice), is sufficient to reduce mitochondrial Ca(2+) and oxidative metabolism, and to establish a pseudohypoxic state with increased autophagy.
View Article and Find Full Text PDFAims: The molecular mechanisms controlling heart function and rhythmicity are incompletely understood. While it is widely accepted that the type 2 ryanodine receptor (Ryr2) is the major Ca(2+) release channel in excitation-contraction coupling, the role of these channels in setting a consistent beating rate remains controversial. Gain-of-function RYR2 mutations in humans and genetically engineered mouse models are known to cause Ca(2+) leak, arrhythmias, and sudden cardiac death.
View Article and Find Full Text PDFNanometre-scale spaces between organelles represent focused nodes for signal transduction and the control of cellular decisions. The endoplasmic reticulum (ER) and the mitochondria form dynamic quasi-synaptic interaction nanodomains in all cell types examined, but the functional role of these junctions in cellular metabolism and cell survival remains to be fully understood. In this paper, we review recent evidence that ER Ca(2+) channels, such as the RyR and IP(3)R, can signal specifically across this nanodomain to the adjacent mitochondria to pace basal metabolism, with focus on the pancreatic β-cell.
View Article and Find Full Text PDF