High-biomass-yielding southerly adapted switchgrasses ( L.) frequently suffer from unpredictable winter hardiness at more northerly sites arising from damage to rhizomes that prevent effective spring regrowth. Previously, changes occurring over the growing season in rhizomes sampled from a cold-adapted tetraploid upland cultivar, Summer, demonstrated a role for abscisic acid (ABA), starch accumulation, and transcriptional reprogramming as drivers of dormancy onset and potential keys to rhizome health during winter dormancy.
View Article and Find Full Text PDFSugarcane aphid (SCA; Melanaphis sacchari) is a devastating pest of sorghum (Sorghum bicolor) that colonizes sorghum plants at different growth stages. Leaf surface characteristics and sugars often influence aphid settling and feeding on host plants. However, how changes in cuticular waxes and sugar levels affect SCA establishment and feeding at different development stages of sorghum have not been explored.
View Article and Find Full Text PDFThe nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO. Although all wheat cultivars had increased yield when grown at elevated CO, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars At elevated CO, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat.
View Article and Find Full Text PDFRising atmospheric [CO] has been shown to impact plant primary metabolism and the severity of head blight (FHB) in wheat. In this study, we evaluated how changes in grain nutritional content due to growth at elevated [CO] affected growth and mycotoxin production. Susceptible (Norm) and moderately resistant (Alsen) hard spring wheat grains that had been grown at ambient (400 ppm) or elevated [CO] (800 ppm) were independently inoculated with two fungal strains, which produce the trichothecene mycotoxin, deoxynivalenol.
View Article and Find Full Text PDFOnions can be damaged by Fusarium basal rot caused by the soilborne fungus Fusarium oxysporum f. sp. cepae (FOC).
View Article and Find Full Text PDFOver 3200 discrete soybean samples were obtained from production locations around the United States during the years 2012-2016. Ground samples were scanned on near infrared spectrometers (NIRS) and analyzed by HPLC for total isoflavone and total saponin composition, as well as total carbohydrate composition. Multiple Linear Regression (MLR) analysis of preprocessed spectral data was used to develop optimized models to predict isoflavone content.
View Article and Find Full Text PDFA variety of potential inhibitors were tested for the first time for the suppression of Erwinia amylovora, the causal agent of fire blight in apples and pears. Strain variability was evident in susceptibility to inhibitors among five independently isolated virulent strains of E. amylovora.
View Article and Find Full Text PDFBacillus subtilis currently encompasses four subspecies, Bacillus subtilis subsp. subtilis, Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp.
View Article and Find Full Text PDFIturins and closely related lipopeptides constitute a family of antifungal compounds known as iturinic lipopeptides that are produced by species in the group. The compounds that comprise the family are: iturin, bacillomycin D, bacillomycin F, bacillomycin L, mycosubtilin, and mojavensin. These lipopeptides are prominent in many strains that have been commercialized as biological control agents against fungal plant pathogens and as plant growth promoters.
View Article and Find Full Text PDFCommercial fuel ethanol fermentations suffer from microbial contaminants, particularly species of Lactobacillus that may persist as antibiotic-resistant biofilms. In this study, culture supernatants from 54 strains of Bacillus known to produce lipopeptides were tested for inhibition of biofilm formation by Lactobacillus fermentum, L. plantarum, and L.
View Article and Find Full Text PDFA strain of bacteria in the Bacillus subtilis species complex was isolated from a building's air vent in the Washington DC area, USA, and produced strong antifungal activity with in vitro assays. This strain, designated (HU Biol-II), showed pronounced inhibitory effects on mycelial growth of a wide spectrum of fungi. The objectives of this study were to use genome sequencing to confirm the taxonomy of HU Biol-II, evaluate its antifungal activity and implement genome mining and HPLC-MS/MS to characterize the bioactive secondary metabolites.
View Article and Find Full Text PDFAppl Biochem Biotechnol
February 2019
Itaconic acid (IA; a building block platform chemical) is currently produced industrially from glucose by fermentation with Aspergillus terreus. In order to expand the use of IA, its production cost must be lowered. Lignocellulosic biomass has the potential to serve as low-cost source of sugars for IA production.
View Article and Find Full Text PDFEssential oils are potential alternatives to synthetic insecticides because they have low mammalian toxicity, degrade rapidly in the environment, and possess complex mixtures of bioactive constituents with multi-modal activity against the target insect populations. Twenty-one essential oils were initially screened for their toxicity against Aedes aegypti (L.) larvae and three out of the seven most toxic essential oils (Manuka, oregano, and clove bud essential oils) were examined for their chemical composition and combined toxicity against Ae.
View Article and Find Full Text PDFItaconic acid (IA), an unsaturated 5-carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially from glucose by fermentation with Aspergillus terreus. However, lignocellulosic biomass has potential to serve as low-cost source of sugars for production of IA. Research needs to be performed to find a suitable A.
View Article and Find Full Text PDFThe GH10 endo-xylanase from Thermoascus aurantiacus CBMAI 756 (XynA) is industrially attractive due to its considerable thermostability and high specific activity. Considering the possibility of a further improvement in thermostability, eleven mutants were created in the present study via site-directed mutagenesis using XynA as a template. XynA and its mutants were successfully overexpressed in Escherichia coli Rosetta-gami DE3 and purified, exhibiting maximum xylanolytic activity at pH 5 and 65°C.
View Article and Find Full Text PDFBacillus subtilis RC 218 was originally isolated from wheat anthers as a potential antagonist of Fusarium graminearum, the causal agent of Fusarium head blight (FHB). It was demonstrated to have antagonist activity against the plant pathogen under in vitro and greenhouse assays. The current study extends characterizing B.
View Article and Find Full Text PDFTunicamycins (TUN) are potent inhibitors of polyprenyl phosphate N-acetylhexosamine 1-phosphate transferases (PPHP), including essential eukaryotic GPT enzymes and bacterial HexNAc 1-P translocases. Hence, TUN blocks the formation of eukaryotic N-glycoproteins and the assembly of bacterial call wall polysaccharides. The genetic requirement for TUN production is well-established.
View Article and Find Full Text PDFBacillus axarquiensis and Bacillus malacitensis were previously reported to be later heterotypic synonyms of Bacillus mojavensis, based primarily on DNA-DNA relatedness values. We have sequenced draft genomes of Bacillus axarquiensis NRRL B-41617T and Bacillus malacitensis NRRL B-41618T. Comparative genomics and DNA-DNA relatedness calculations showed that while Bacillus axarquiensis and Bacillus malacitensis are synonymous with each other, they are not synonymous with Bacillus mojavensis.
View Article and Find Full Text PDFA procedure was developed to recover xylooligosaccharides (XOS) from Miscanthus×giganteus (M×G) hydrolyzate. M×G hydrolyzate was prepared using autohydrolysis, and XOS rich fractions were acquired using activated carbon adsorption and stepwise ethanol elution. The combined XOS fractions were purified using a series of ion exchange resin treatments.
View Article and Find Full Text PDFBackground: Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18-25 % of the total soluble sugars in the hydrolysate and 12-18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7-9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production from cellulosic biomass.
View Article and Find Full Text PDFSwitchgrass (Panicum virgatum, L.) is a potential renewable source of carbohydrates for use in microbial conversion to biofuels. Xylan comprises approximately 30% of the switchgrass cell wall.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
May 2015
Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into 13 industrial yeast strains of varied genetic background. TAL production varied 63-fold between strains when compared in batch culture with glucose.
View Article and Find Full Text PDFSwitchgrass (Panicum virgatum, L.) is a potential dedicated biomass crop for use in biocatalytic conversion systems to biofuels. Nearly 30% of switchgrass cell wall material is xylan.
View Article and Find Full Text PDFThe optima conditions of production and purification of xylooligosaccharides (XOS) from Miscanthus x giganteus (MxG) were investigated. Using autohydrolysis, XOS were produced at 160, 180 and 200°C at 60, 20 and 5min, respectively. XOS yield up to 13.
View Article and Find Full Text PDF