Publications by authors named "Michael J Bojdys"

Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries.

View Article and Find Full Text PDF

Polymers with intrinsic microporosity (PIMs) are gaining attention as gas separation membranes. Nevertheless, they face limitations due to their pronounced physical aging. In this study, a covalent organic framework containing λ-phosphinine moieties, CPSF-EtO, was incorporated as a nanofiller (concentration range 0-10 wt %) into a PIM-1 matrix forming dense films with a thickness of ca.

View Article and Find Full Text PDF

Graphitic carbon nitrides are covalently-bonded, layered, and crystalline semiconductors with high thermal and oxidative stability. These properties make graphitic carbon nitrides potentially useful in overcoming the limitations of 0D molecular and 1D polymer semiconductors. In this contribution, we study structural, vibrational, electronic and transport properties of nano-crystals of poly(triazine-imide) (PTI) derivatives with intercalated Li- and Br-ions and without intercalates.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) with encapsulated nanoparticles (NPs) enjoy a vastly expanded application potential in catalysis, filtration, and sensing. The selection of particular modified core-NPs has yielded partial successes in overcoming lattice mismatch. However, restrictions on the choice of NPs not only limit the diversity, but also affect the properties of the hybrid materials.

View Article and Find Full Text PDF

Semiconducting carbon nitride polymers are used in metal-free photocatalysts and in opto-electronic devices. Conventionally, they are obtained using thermal and ionothermal syntheses in inscrutable, closed systems and therefore, their condensation behavior is poorly understood. Here, the synthetic protocols and properties are compared for two types of carbon nitride materials - 2D layered poly(triazine imide) (PTI) and hydrogen-bonded melem hydrate - obtained from three low-melting salt eutectics taken from the systematic series of the alkali metal halides: LiCl/KCl, LiBr/KBr, and LiI/KI.

View Article and Find Full Text PDF

Graphdiyne polymers have interesting electronic properties due to their π-conjugated structure and modular composition. Most of the known synthetic pathways for graphdiyne polymers yield amorphous solids because the irreversible formation of carbon-carbon bonds proceeds under kinetic control and because of defects introduced by the inherent chemical lability of terminal alkyne bonds in the monomers. Here, we present a one-pot surface-assisted deprotection/polymerisation protocol for the synthesis of crystalline graphdiynes over a copper surface starting with stable trimethylsilylated alkyne monomers.

View Article and Find Full Text PDF

To this day, the active components of integrated circuits consist mostly of (semi-)metals. Concerns for raw material supply and pricing aside, the overreliance on (semi-)metals in electronics limits our abilities (i) to tune the properties and composition of the active components, (ii) to freely process their physical dimensions, and (iii) to expand their deployment to applications that require optical transparency, mechanical flexibility, and permeability. 2D organic semiconductors match these criteria more closely.

View Article and Find Full Text PDF

Poly(triazine imide) (PTI) is a highly crystalline semiconductor, and though no techniques exist that enable synthesis of macroscopic monolayers of PTI, it is possible to study it in thin layer device applications that are compatible with its polycrystalline, nanoscale morphology. We find that the by-product of conventional PTI synthesis is a C-C carbon-rich phase that is detrimental for charge transport and photoluminescence. An optimized synthetic protocol yields a PTI material with an increased quantum yield, enabled photocurrent and electroluminescence.

View Article and Find Full Text PDF

Valuing diversity leads to scientific excellence, the progress of science and most importantly, it is simply the right thing to do. We can value diversity not only in words, but also in actions.

View Article and Find Full Text PDF

Background: Acute toxicity of perfluorocarbon liquids (PFCL) is a relevant problem in retinal surgery due to impurities in the medicinal product.

Objective: This article gives an overview of the current problems, possible explanations, interactions with other medicinal products and approaches to improved patient safety.

Results: Toxicity is caused by impurities in the raw material but can also be caused by interactions with other medicinal products or drugs.

View Article and Find Full Text PDF

Fully-aromatic, two-dimensional covalent organic frameworks (2D COFs) are hailed as candidates for electronic and optical devices, yet to-date few applications emerged that make genuine use of their rational, predictive design principles and permanent pore structure. Here, we present a 2D COF made up of chemoresistant β-amino enone bridges and Lewis-basic triazine moieties that exhibits a dramatic real-time response in the visible spectrum and an increase in bulk conductivity by two orders of magnitude to a chemical trigger - corrosive HCl vapours. The optical and electronic response is fully reversible using a chemical switch (NH vapours) or physical triggers (temperature or vacuum).

View Article and Find Full Text PDF

Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si, and S have found their way into their building blocks so far. Here, the toolbox available to polymer and materials chemists is expanded by one additional nonmetal, phosphorus. Starting with a building block that contains a λ -phosphinine (C P) moiety, a number of polymerization protocols are evaluated, finally obtaining a π-conjugated, covalent phosphinine-based framework (CPF-1) through Suzuki-Miyaura coupling.

View Article and Find Full Text PDF

Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material "beyond graphene".

View Article and Find Full Text PDF

Crystalline and amorphous organic materials are an emergent class of heterogeneous photocatalysts for the generation of hydrogen from water, but a direct correlation between their structures and the resulting properties has not been achieved so far. To make a meaningful comparison between structurally different, yet chemically similar porous polymers, two porous polymorphs of a triazine-based graphdiyne (TzG) framework are synthesized by a simple, one-pot homocoupling polymerization reaction using as catalysts Cu for TzG and Pd /Cu for TzG . The polymers form through irreversible coupling reactions and give rise to a crystalline (TzG ) and an amorphous (TzG ) polymorph.

View Article and Find Full Text PDF

Water splitting using polymer photocatalysts is a key technology to a truly sustainable hydrogen-based energy economy. Synthetic chemists have intuitively tried to enhance photocatalytic activity by tuning the length of π-conjugated domains of their semiconducting polymers, but the increasing flexibility and hydrophobicity of ever-larger organic building blocks leads to adverse effects such as structural collapse and inaccessible catalytic sites. To reach the ideal optical band gap of about 2.

View Article and Find Full Text PDF

Light-driven water splitting is a potential source of abundant, clean energy, yet efficient charge-separation and size and position of the bandgap in heterogeneous photocatalysts are challenging to predict and design. Synthetic attempts to tune the bandgap of polymer photocatalysts classically rely on variations of the sizes of their π-conjugated domains. However, only donor-acceptor dyads hold the key to prevent undesired electron-hole recombination within the catalyst via efficient charge separation.

View Article and Find Full Text PDF

Crystalline frameworks composed of hexacoordinate silicon species have thus far only been observed in a few high pressure silicate phases. By implementing reversible Si-O chemistry for the crystallization of covalent organic frameworks, we demonstrate the simple one-pot synthesis of silicate organic frameworks based on octahedral dianionic SiO building units. Clear evidence of the hexacoordinate environment around the silicon atoms is given by Si nuclear magnetic resonance analysis.

View Article and Find Full Text PDF

Design and synthesis of ordered, metal-free layered materials is intrinsically difficult due to the limitations of vapor deposition processes that are used in their making. Mixed-dimensional (2D/3D) metal-free van der Waals (vdW) heterostructures based on triazine (C N ) linkers grow as large area, transparent yellow-orange membranes on copper surfaces from solution. The membranes have an indirect band gap (E = 1.

View Article and Find Full Text PDF

Donor-acceptor dyads hold the key to tuning of electrochemical properties and enhanced mobility of charge carriers, yet their incorporation into a heterogeneous polymer network proves difficulty owing to the fundamentally different chemistry of the donor and acceptor subunits. A family of sulfur- and nitrogen-containing porous polymers (SNPs) are obtained via Sonogashira-Hagihara cross-coupling and combine electron-withdrawing triazine (C N ) and electron-donating, sulfur-containing linkers. Choice of building blocks and synthetic conditions determines the optical band gap (from 1.

View Article and Find Full Text PDF

Cyanated pentacenes are very promising candidate materials for ambipolar and n-type transistors. However, only a few examples have been obtained to date - all requiring lengthy, multi-step processes. Herein, we present the first preparation of 5,7,12,14-tetracyanopentacene (TCP) and a facile, scaled-up preparation of 6,13-dicyanopentacene (DCP).

View Article and Find Full Text PDF

Graphitic carbon nitride has been predicted to be structurally analogous to carbon-only graphite, yet with an inherent bandgap. We have grown, for the first time, macroscopically large crystalline thin films of triazine-based, graphitic carbon nitride (TGCN) using an ionothermal, interfacial reaction starting with the abundant monomer dicyandiamide. The films consist of stacked, two-dimensional (2D) crystals between a few and several hundreds of atomic layers in thickness.

View Article and Find Full Text PDF

The carbon nitride poly(triazine imide) with intercalated bromide ions is a layered, graphitic material of 2D covalently bonded molecular sheets with an exceptionally large gallery height of 3.52 Å due to the intercalated bromide anions. The material can be cleaved both mechanically and chemically into thin sheets and scrolls analogous to the carbon-only systems graphite and graphene.

View Article and Find Full Text PDF

The characterisation of porous crystalline solids often relies on single crystal X-ray diffraction, which does not give direct information about the surface of the material. Here, crystals of a porous organic cage, CC3-R, are investigated by atomic force microscopy and shown to possess two distinct gas-solid interfaces, proving that the bulk crystal structure is preserved at the porous crystal surface.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: