Publications by authors named "Michael J Bartlett"

Plant phenology is not only manifested in the seasonal timing of vegetative and reproductive processes but also has ontogenetic aspects. The adaptive basis of seasonal phenology has been considered mainly in terms of climatic drivers. However, some biotic factors as likely evolutionary influences on plants' phenology appear to have been under-researched.

View Article and Find Full Text PDF

The sequential reaction of [Ru(C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH)Cl(CO)2(PPh3)2] with [Ru(CO)2(PPh3)3], and N-chlorosuccinimide affords the binuclear tetracarbido complex [Ru2(μ-C[triple bond, length as m-dash]CC[triple bond, length as m-dash]C)Cl2(CO)4(PPh3)4]. This may be compared with the first example of a butenyndiyl bridged bimetallic complex [Ru2(μ-CH[double bond, length as m-dash]CHC[triple bond, length as m-dash]C)Cl2(CO)4(PPh3)4] which is obtained from the reaction of [Ru(C[triple bond, length as m-dash]CC[triple bond, length as m-dash]CH)Cl(CO)2(PPh3)2] with [RuHCl(CO)(PPh3)3] followed by carbonylation. Characterisational data are discussed with reference to constituent model complexes [Ru(C[triple bond, length as m-dash]CH)Cl(CO)2(PPh3)2] and [Ru(CH[double bond, length as m-dash]CH2)Cl(CO)2(PPh3)2] in addition to DFT analysis of the bonding in the complexes [Ru2(μ-L)Cl2(CO)4(PMe3)4] (L = C[triple bond, length as m-dash]C-C[triple bond, length as m-dash]C, CH[double bond, length as m-dash]CHC[triple bond, length as m-dash]C, CH[double bond, length as m-dash]CH-CH[double bond, length as m-dash]CH).

View Article and Find Full Text PDF

In many species, males can make rapid adjustments to ejaculate performance in response to sperm competition risk; however, the mechanisms behind these changes are not understood. Here, we manipulate male social status in an externally fertilising fish, chinook salmon (), and find that in less than 48 hr, males can upregulate sperm velocity when faced with an increased risk of sperm competition. Using a series of sperm manipulation and competition experiments, we show that rapid changes in sperm velocity are mediated by seminal fluid and the effect of seminal fluid on sperm velocity directly impacts paternity share and therefore reproductive success.

View Article and Find Full Text PDF