Publications by authors named "Michael I Ham"

Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas) distributed among groups of randomly rotated fragments (clutter). The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms), followed by an image mask optimized so as to interrupt visual processing.

View Article and Find Full Text PDF

During development, the mammalian brain differentiates into specialized regions with distinct functional abilities. While many factors contribute to functional specialization, we explore the effect of neuronal density on the development of neuronal interactions in vitro. Two types of cortical networks, namely, dense and sparse with 50,000 and 12,500 total cells, respectively, are studied.

View Article and Find Full Text PDF

We present a general information theoretic approach for identifying functional subgraphs in complex networks. We show that the uncertainty in a variable can be written as a sum of information quantities, where each term is generated by successively conditioning mutual informations on new measured variables in a way analogous to a discrete differential calculus. The analogy to a Taylor series suggests efficient optimization algorithms for determining the state of a target variable in terms of functional groups of other nodes.

View Article and Find Full Text PDF

All higher order central nervous systems exhibit spontaneous neural activity, though the purpose and mechanistic origin of such activity remains poorly understood. We quantitatively analyzed the ignition and spread of collective spontaneous electrophysiological activity in networks of cultured cortical neurons growing on microelectrode arrays. Leader neurons, which form a mono-synaptically connected primary circuit, and initiate a majority of network bursts were found to be a small subset of recorded neurons.

View Article and Find Full Text PDF

We apply an information-theoretic treatment of action potential time series measured with microelectrode arrays to estimate the connectivity of mammalian neuronal cell assemblies grown in vitro. We infer connectivity between two neurons via the measurement of the mutual information between their spike trains. In addition we measure higher-point multi-information between any two spike trains, conditional on the activity of a third cell, as a means to identify and distinguish classes of functional connectivity among three neurons.

View Article and Find Full Text PDF