Electron photoemission and ponderomotive acceleration by surface enhanced optical fields is considered as a plausible mechanism of terahertz radiation from metallic nanostructures under ultrafast laser excitation. To verify this mechanism, we studied experimentally terahertz emission from an array of gold nanorods illuminated by intense (~10-100 GW/cm) femtosecond pulses of different central wavelengths (600, 720, 800, and 1500 nm). We found for the first time that the order of the dependence of the terahertz fluence on the laser intensity is, unexpectedly, almost the same (~4.
View Article and Find Full Text PDFWe use terahertz time-domain imaging and time-of-flight tomography to examine subsurface defects in an early-19th-century Russian icon painting. In the transmission geometry, we distinguish between native wood and higher-absorption knotted wood. In reflection, we identify a void in the wood filled with foreign filler material.
View Article and Find Full Text PDFA new electro-optic (EO) sampling scheme, which we refer to as "heterodyne EO sampling", for detection of pulsed terahertz (THz) waves is proposed and experimentally demonstrated. In this heterodyne EO sampling scheme, the intensity change in the optical probe pulse induced by a THz field in a nonlinear crystal is measured without any polarization optics. Applied in combination with the non-collinear Cherenkov velocity matching technique, this method allows one to detect pulsed THz waves efficiently and easily using a simpler optical setup as compared to the conventional ellipsometric EO sampling method.
View Article and Find Full Text PDFWe experimentally demonstrate an efficient electro-optic sampling scheme based on Cherenkov phase matching of broadband terahertz radiation with 800-nm femtosecond probe beam in a 0.5 mm-thick LiNbO3 crystal coupled to a Si prism. The electro-optic signal from a Cherenkov-phase-matched LiNbO3 crystal is found to be comparable to that with a 4 mm-thick ZnTe crystal using a collinear phase matching.
View Article and Find Full Text PDF