Publications by authors named "Michael Hough"

Article Synopsis
  • Serial crystallography involves sequentially delivering microcrystals to an X-ray beam to capture diffraction patterns, primarily using X-ray Free Electron Lasers (XFELs) and increasingly synchrotron experiments.
  • This method allows for time-resolved studies without radiation damage to the crystals, enabling researchers to gather data over a vast range of time scales, from femtoseconds to seconds.
  • The fixed target approach in this technique offers advantages such as maximizing crystal usage for data collection and precise control for timing experiments, with notable applications at the Diamond Light Source and SACLA XFEL.
View Article and Find Full Text PDF

Copper nitrite reductases (CuNiRs) exhibit a strong pH dependence of their catalytic activity. Structural movies can be obtained by serially recording multiple structures (frames) from the same spot of a crystal using the MSOX serial crystallography approach. This method has been combined with on-line single crystal optical spectroscopy to capture the pH-dependent structural changes that accompany during turnover of CuNiRs from two Rhizobia species.

View Article and Find Full Text PDF

Cytochromes c'-α are nitric oxide (NO)-binding heme proteins derived from bacteria that can thrive in a wide range of temperature environments. Studies of mesophilic Alcaligenes xylosoxidans cytochrome c'-α (AxCP-α) have revealed an unusual NO-binding mechanism involving both heme faces, in which NO first binds to form a distal hexa-coordinate Fe(II)-NO (6cNO) intermediate and then displaces the proximal His to form a proximal penta-coordinate Fe(II)-NO (5cNO) final product. Here, we characterize a thermally stable cytochrome c'-α from thermophilic Hydrogenophilus thermoluteolus (PhCP-α) to understand how protein thermal stability affects NO binding.

View Article and Find Full Text PDF

Protocols for robotic protein crystallization using the Crystallization Facility at Harwell and in situ room temperature data collection from crystallization plates at Diamond Light Source beamline VMXi are described. This approach enables high-quality room-temperature crystal structures to be determined from multiple crystals in a straightforward manner and provides very rapid feedback on the results of crystallization trials as well as enabling serial crystallography. The value of room temperature structures in understanding protein structure, ligand binding, and dynamics is becoming increasingly recognized in the structural biology community.

View Article and Find Full Text PDF

The marine cyanobacterium is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome ecotypes typically possess a single gene.

View Article and Find Full Text PDF

A considerable bottleneck in serial crystallography at XFEL and synchrotron sources is the efficient production of large quantities of homogenous, well diffracting microcrystals. Efficient high-throughput screening of batch-grown microcrystals and the determination of ground-state structures from different conditions is thus of considerable value in the early stages of a project. Here, a highly sample-efficient methodology to measure serial crystallography data from microcrystals by raster scanning within standard in situ 96-well crystallization plates is described.

View Article and Find Full Text PDF

Cupredoxins are widely occurring copper-binding proteins with a typical Greek-key beta barrel fold. They are generally described as electron carriers that rely on a T1 copper centre coordinated by four ligands provided by the folded polypeptide. The discovery of novel cupredoxins demonstrates the high diversity of this family, with variations in terms of copper-binding ligands, copper centre geometry, redox potential, as well as biological function.

View Article and Find Full Text PDF

In heme enzymes, such as members of the dye-decolorising peroxidase (DyP) family, the formation of the highly oxidising catalytic Fe(iv)-oxo intermediates following reaction with hydrogen peroxide can lead to free radical migration (hole hopping) from the heme to form cationic tyrosine and/or tryptophan radicals. These species are highly oxidising (∼1 V NHE) and under certain circumstances can catalyse the oxidation of organic substrates. Factors that govern which specific tyrosine or tryptophan the free radical migrates to in heme enzymes are not well understood, although in the case of tyrosyl radical formation the nearby proximity of a proton acceptor is a recognised facilitating factor.

View Article and Find Full Text PDF

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces.

View Article and Find Full Text PDF

The utility of X-ray crystal structures determined under ambient-temperature conditions is becoming increasingly recognized. Such experiments can allow protein dynamics to be characterized and are particularly well suited to challenging protein targets that may form fragile crystals that are difficult to cryo-cool. Room-temperature data collection also enables time-resolved experiments.

View Article and Find Full Text PDF

The structural basis by which gas-binding heme proteins control their interactions with NO, CO, and O is fundamental to enzymology, biotechnology, and human health. Cytochromes c' (cyts c') are a group of putative NO-binding heme proteins that fall into two families: the well-characterized four alpha helix bundle fold (cyts c'-α) and an unrelated family with a large beta-sheet fold (cyts c'-β) resembling that of cytochromes P460. A recent structure of cyt c'-β from Methylococcus capsulatus Bath revealed two heme pocket phenylalanine residues (Phe 32 and Phe 61) positioned near the distal gas-binding site.

View Article and Find Full Text PDF

The interaction between macromolecular proteins and small molecule ligands is an essential component of cellular function. Such ligands may include enzyme substrates, molecules involved in cellular signalling or pharmaceutical drugs. Together with biophysical techniques used to assess the thermodynamic and kinetic properties of ligand binding to proteins, methodology to determine high-resolution structures that enable atomic level interactions between protein and ligand(s) to be directly visualised is required.

View Article and Find Full Text PDF

Controlling the reactivity of high-valent Fe(IV)-O catalytic intermediates, Compounds I and II, generated in heme enzymes upon reaction with dioxygen or hydrogen peroxide, is important for function. It has been hypothesized that the presence (wet) or absence (dry) of distal heme pocket water molecules can influence whether Compound I undergoes sequential one-electron additions or a concerted two-electron reduction. To test this hypothesis, we investigate the role of water in the heme distal pocket of a dye-decolorizing peroxidase utilizing a combination of serial femtosecond crystallography and rapid kinetic studies.

View Article and Find Full Text PDF

Enzymes with iron-containing active sites play crucial roles in catalysing a myriad of oxidative reactions essential to aerobic life. Defining the three-dimensional structures of iron enzymes in resting, oxy-bound intermediate and substrate-bound states is particularly challenging, not least because of the extreme susceptibility of the Fe(III) and Fe(IV) redox states to radiation-induced chemistry caused by intense X-ray or electron beams. The availability of novel sources such as X-ray free electron lasers has enabled structures that are effectively free of the effects of radiation-induced chemistry and allows time-resolved structures to be determined.

View Article and Find Full Text PDF

Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources.

View Article and Find Full Text PDF
Article Synopsis
  • Cytochrome c'-β is a heme protein from the cytochrome P460 family, specifically the variant TTCP-β from the heat-loving bacterium Thermus thermophilus, which features a stable crystal structure in an antiparallel β-sheet format.
  • The crystal structure of TTCP-β, analyzed at a high resolution of 1.74 Å, shows similarities to another variant known as MCCP-β, particularly in how both proteins bind gases like nitric oxide and carbon monoxide.
  • Notably, TTCP-β has a higher thermal stability, with a denaturation temperature of 117°C, attributed to its larger dimeric interface and an increased number of proline residues that help maintain a
View Article and Find Full Text PDF

Structure determination of proteins and enzymes by X-ray crystallography remains the most widely used approach to complement functional and mechanistic studies. Capturing the structures of intact redox states in metalloenzymes is critical for assigning the chemistry carried out by the metal in the catalytic cycle. Unfortunately, X-rays interact with protein crystals to generate solvated photoelectrons that can reduce redox active metals and hence change the coordination geometry and the coupled protein structure.

View Article and Find Full Text PDF

Naphthenic acids (NAs) are carboxylic acids with the formula (C H O ) and are among the most toxic, persistent constituents of oil sands process-affected waters (OSPW), produced during oil sands extraction. Currently, the proteins and mechanisms involved in NA biodegradation are unknown. Using LC-MS/MS shotgun proteomics, we identified proteins overexpressed during the growth of Pseudomonas fluorescens Pf-5 on a model NA (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and commercial NA mixture (Acros).

View Article and Find Full Text PDF

An estimated half of all proteins contain a metal, with these being essential for a tremendous variety of biological functions. X-ray crystallography is the major method for obtaining structures at high resolution of these metalloproteins, but there are considerable challenges to obtain intact structures due to the effects of radiation damage. Serial crystallography offers the prospect of determining low-dose synchrotron or effectively damage free XFEL structures at room temperature and enables time-resolved or dose-resolved approaches.

View Article and Find Full Text PDF

The recently developed multiple structures from one crystal (MSOX) serial crystallography method can be used to provide multiple snapshots of the progress of enzymatic reactions taking place within a protein crystal. Such MSOX snapshots can be used as a reference for combined quantum mechanical/molecular mechanical (QM/MM) simulations of enzyme reactivity within the crystal. QM/MM calculations are used to identify details of reference states that cannot be directly observed by X-ray diffraction experiments, such as protonation and oxidation states.

View Article and Find Full Text PDF

The design and synthesis of copper complexes that can reduce nitrite to NO has attracted considerable interest. They have been guided by the structural information on the catalytic Cu centre of the widespread enzymes Cu nitrite reductases but the chemically novel side-on binding of NO observed in all crystallographic studies of these enzymes has been questioned in terms of its functional relevance. We show conversion of NO to NO in the crystal maintained at 170 K and present 'molecular movies' defining events during enzyme turnover including the formation of side-on Cu-NO intermediate.

View Article and Find Full Text PDF

Serial data collection is a relatively new technique for synchrotron users. A user manual for fixed target data collection at I24, Diamond Light Source is presented with detailed step-by-step instructions, figures, and videos for smooth data collection.

View Article and Find Full Text PDF

The emergence of X-ray free-electron lasers has led to the development of serial macromolecular crystallography techniques, making it possible to study smaller and more challenging crystal systems and to perform time-resolved studies on fast time scales. For most of these studies the desired crystal size is limited to a few micrometres, and the generation of large amounts of nanocrystals or microcrystals of defined size has become a bottleneck for the wider implementation of these techniques. Despite this, methods to reliably generate microcrystals and fine-tune their size have been poorly explored.

View Article and Find Full Text PDF

Hydroxylamine (NHOH or HA) is a redox-active nitrogen oxide that occurs as a toxic intermediate in the oxidation of ammonium by nitrifying and methanotrophic bacteria. Within ammonium containing environments, HA is generated by ammonia monooxygenase (nitrifiers) or methane monooxygenase (methanotrophs). Subsequent oxidation of HA is catalyzed by heme proteins, including cytochromes P460 and multiheme hydroxylamine oxidoreductases, the former contributing to emissions of NO, an ozone-depleting greenhouse gas.

View Article and Find Full Text PDF

Obtaining structures of intact redox states of metal centers derived from zero dose X-ray crystallography can advance our mechanistic understanding of metalloenzymes. In dye-decolorising heme peroxidases (DyPs), controversy exists regarding the mechanistic role of the distal heme residues aspartate and arginine in the heterolysis of peroxide to form the catalytic intermediate compound I (Fe =O and a porphyrin cation radical). Using serial femtosecond X-ray crystallography (SFX), we have determined the pristine structures of the Fe and Fe =O redox states of a B-type DyP.

View Article and Find Full Text PDF