Light-dependent fatty acid photodecarboxylases (FAPs) hold significant potential for biotechnology, due to their capability to produce alka(e)nes directly from the corresponding (un)saturated natural fatty acids requiring light as the only reagent. This study expands the family of FAPs through cavity-based enzyme discovery methods. Thirty enzyme candidates with potential photodecarboxylation activity were identified by matching the cavities of four related template structures against the Protein Data Bank's flavoproteins, a library of proteins identified via the Foldseek Search Server, and homology models of sequences resulting from BLAST.
View Article and Find Full Text PDFAdvancing climate change increases the risk of future infectious disease outbreaks, particularly of zoonotic diseases, by affecting the abundance and spread of viral vectors. Concerningly, there are currently no approved drugs for some relevant diseases, such as the arboviral diseases chikungunya, dengue or zika. The development of novel inhibitors takes 10-15 years to reach the market and faces critical challenges in preclinical and clinical trials, with approximately 30% of trials failing due to side effects.
View Article and Find Full Text PDFHuman proteins are crucial players in both health and disease. Understanding their molecular landscape is a central topic in biological research. Here, we present an extensive dataset of predicted protein structures for 42,042 distinct human proteins, including splicing variants, derived from the UniProt reference proteome UP000005640.
View Article and Find Full Text PDFThe COVID-19 pandemic continues to pose a substantial threat to human lives and is likely to do so for years to come. Despite the availability of vaccines, searching for efficient small-molecule drugs that are widely available, including in low- and middle-income countries, is an ongoing challenge. In this work, we report the results of an open science community effort, the "Billion molecules against COVID-19 challenge", to identify small-molecule inhibitors against SARS-CoV-2 or relevant human receptors.
View Article and Find Full Text PDFIntroduction: The current coronavirus pandemic is being combated worldwide by nontherapeutic measures and massive vaccination programs. Nevertheless, therapeutic options such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main-protease (M) inhibitors are essential due to the ongoing evolution toward escape from natural or induced immunity. While antiviral strategies are vulnerable to the effects of viral mutation, the relatively conserved M makes an attractive drug target: Nirmatrelvir, an antiviral targeting its active site, has been authorized for conditional or emergency use in several countries since December 2021, and a number of other inhibitors are under clinical evaluation.
View Article and Find Full Text PDFTo date, more than 263 million people have been infected with SARS-CoV-2 during the COVID-19 pandemic. In many countries, the global spread occurred in multiple pandemic waves characterized by the emergence of new SARS-CoV-2 variants. Here we report a sequence and structural-bioinformatics analysis to estimate the effects of amino acid substitutions on the affinity of the SARS-CoV-2 spike receptor binding domain (RBD) to the human receptor hACE2.
View Article and Find Full Text PDFPodophyllotoxin is probably the most prominent representative of lignan natural products. Deoxy-, epi-, and podophyllotoxin, which are all precursors to frequently used chemotherapeutic agents, were prepared by a stereodivergent biotransformation and a biocatalytic kinetic resolution of the corresponding dibenzylbutyrolactones with the same 2-oxoglutarate-dependent dioxygenase. The reaction can be conducted on 2 g scale, and the enzyme allows tailoring of the initial, "natural" structure and thus transforms various non-natural derivatives.
View Article and Find Full Text PDF