Publications by authors named "Michael Helgert"

We fabricated stochastic antireflective structures (ARS) and analyzed their stability against high power laser irradiation and high temperature annealing. For 8 ps pulse duration and 1030 nm wavelength we experimentally determined their laser induced damage threshold to 4.9 (±0.

View Article and Find Full Text PDF

In this paper, we present a broadband wire grid polarizer with a spectral working range down to a wavelength of 193 nm. Tungsten is chosen as grating material because it provides a high extinction ratio and transmission compared with other common grating materials. The fabrication of the grating with 100 nm period was accomplished using a spatial frequency doubling approach based on ultrafast electron beam lithography and a sophisticated deposition technique.

View Article and Find Full Text PDF

Antireflective subwavelength structures (ARS) resembling nanostructures found on the cornea of night-active insects reduce the reflection of light by providing a gradual change in the refractive index at the interface. These artificial ARS have mainly been fabricated by a combination of conventional lithography and reactive ion etching, which constrains their application to planar substrates. We report on the fabrication of ARS using three different techniques including bottom-up and top-down methods as well as their combination on microlens arrays (MLAs) made of fused silica.

View Article and Find Full Text PDF

Laterally structured antireflective sub-wavelength structures show unique properties with respect to broadband performance, damage threshold and thermal stability. Thus they are superior to classical layer based antireflective coatings for a number of applications. Dependent on the selected fabrication technology the local topography of the periodic structure may deviate from the perfect repetition of a sub-wavelength unit cell.

View Article and Find Full Text PDF

A flexible, nondestructive, and cost-effective replication technique for nanostructures is presented. The advantages of the process are: 1) it allows for tailoring structural parameters of the replica (e.g.

View Article and Find Full Text PDF

Antireflective surfaces composed of biomimetic sub-wavelength structures that employ the 'moth eye principle' for reflectance reduction are highly desirable in many optical applications such as solar cells, photodetectors and laser optics. We report an efficient approach for the fabrication of antireflective surfaces based on a two-step process consisting of gold nanoparticle mask generation by micellar block copolymer nanolithography and a multi-step reactive ion etching process. Depending on the RIE process parameters nanostructured surfaces with tailored antireflective properties can easily be fabricated that show optimum performance for specific applications.

View Article and Find Full Text PDF

Al(2)O(3) and TiO(2) thin films have been deposited on Si wafers, quartz, BK7 glass, and polycarbonate substrates by atomic layer deposition (ALD). The refractive indices and growth rates of the materials have been determined by spectroscopic ellipsometry and transmission electron microscopy. The influence of substrate temperature and precursor on the refractive indices has been investigated.

View Article and Find Full Text PDF

We report an innovative approach for the fabrication of highly light transmissive, antireflective optical interfaces. This is possible due to the discovery that metallic nanoparticles may be used as a lithographic mask to etch nonstraightforward structures into fused silica, which results in a quasihexagonal pattern of hollow, pillar-like protuberances. The far reaching optical performance of these structures is demonstrated by reflection and transmission measurements at oblique angles of incidence over a broad spectral region ranging from deep-ultraviolet to infrared light.

View Article and Find Full Text PDF