Due to their high coherence, lasers are ubiquitous tools in science. We show that by engineering the coupling between the gain medium and the laser cavity as well as the laser cavity and the output port, it is possible to eliminate most of the noise due to photons entering as well as leaving the laser cavity. Hence, it is possible to reduce the laser linewidth by a factor equal to the number of photons in the laser cavity below the standard quantum limit.
View Article and Find Full Text PDFThe Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state.
View Article and Find Full Text PDFWe realize a microwave quantum-limited amplifier that is directional and can therefore function without the front circulator needed in many quantum measurements. The amplification takes place in only one direction between the input and output ports. Directionality is achieved by multipump parametric amplification combined with wave interference.
View Article and Find Full Text PDFEddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for imaging.
View Article and Find Full Text PDFWe demonstrate the time-reversed process of nondegenerate three-wave parametric amplification from three distinct sources in the fully nonlinear regime using a Josephson amplifier. In the reverse process, coherent attenuation, signal and idler beams destructively interfere in the presence of a pump to generate additional pump photons. This effect is observed through the symmetric phase-dependent amplification and attenuation of the signal and idler beams and, in the depleted pump regime, through the phase-dependent modulation of the amplifier gain, directly probing the enhancement of the pump.
View Article and Find Full Text PDFWe demonstrate full frequency conversion in the microwave domain using a Josephson three-wave mixing device pumped at the difference between the frequencies of its fundamental eigenmodes. By measuring the signal output as a function of the intensity and phase of the three input signal, idler, and pump tones, we show that the device functions as a controllable three-wave beam splitter or combiner for propagating microwave modes at the single-photon level, in accordance with theory. Losses at the full conversion point are found to be less than 10(-2).
View Article and Find Full Text PDFThe proton T(1) was measured at 132 μT in ex vivo prostate tissue specimens from radical prostatectomies of 35 patients with prostate cancer. Each patient provided two specimens. The NMR and MRI measurements involved proton repolarization, a field of typically 150 mT and detection of the 5.
View Article and Find Full Text PDFWe examine the calculated signal-to-noise ratio (SNR) achievable with different MRI detection modalities in precession fields ranging from 10 microT to 1.5 T. In particular, we compare traditional Faraday detectors with both tuned and untuned detectors based on superconducting quantum interference devices (SQUIDs).
View Article and Find Full Text PDFThe use of very low noise magnetometers based on Superconducting QUantum Interference Devices (SQUIDs) enables nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) in microtesla magnetic fields. An untuned superconducting flux transformer coupled to a SQUID achieves a magnetic field noise of 10(-15) T Hz(-1/2). The frequency-independent response of this magnetometer combined with prepolarization of the nuclear spins yields an NMR signal that is independent of the Larmor frequency omega0.
View Article and Find Full Text PDFIn magnetic resonance imaging performed at fields of 1 T and above, the presence of a metal insert can distort the image because of susceptibility differences within the sample and modification of the radiofrequency fields by screening currents. Furthermore, it is not feasible to perform nuclear magnetic resonance (NMR) spectroscopy or acquire a magnetic resonance image if the sample is enclosed in a metal container. Both problems can be overcome by substantially lowering the NMR frequency.
View Article and Find Full Text PDF