Publications by authors named "Michael Haselman"

Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics.

View Article and Find Full Text PDF

Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics.

View Article and Find Full Text PDF

Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use, make them an ideal technology for pulse timing and are a central part of our next generation of electronics for our pre-clinical PET scanner systems. To that end, our laboratory has been developing a pulse timing technique that uses pulse fitting to achieve timing resolution well below the sampling period of the analog to digital converter (ADC).

View Article and Find Full Text PDF