Publications by authors named "Michael Hack"

Free energy perturbation (FEP) methodologies have become commonplace methods for modeling potency in hit-to-lead and lead optimization stages of drug discovery. The conformational states of the initial poses of compounds for FEP+ calculations are often set up by alignment to a cocrystal structure ligand, but it is not clear if this method provides the best result for all proteins or all ligands. Not only are ligand conformational states potential variables in modeling compound potency in FEP but also the selection of crystallographic water molecules for inclusion in the FEP input structures can impact FEP models.

View Article and Find Full Text PDF

Introduction: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare yet severe adverse complication first identified during the global vaccination effort against SARS-CoV-2 infection, predominantly observed following administration of the ChAdOx1-S (Oxford-AstraZeneca) and Ad26.CoV2.S (Johnson & Johnson/Janssen) adenoviral vector-based vaccines.

View Article and Find Full Text PDF

Introduction: Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a life-threatening prothrombotic disorder first identified following the introduction of adenoviral vector vaccines for COVID-19. The condition is characterized by anti-PF4 antibodies and clinically presents with thrombocytopenia and thrombosis often in unusual anatomical sites.

Areas Covered: In this review, we discuss the clinical presentation, diagnostic testing, and treatment of VITT.

View Article and Find Full Text PDF

[4-(4-Methyl-2-(4-(trifluoromethyl)phenyl)thiazole-5-yl)pyrimidine-2-amine] (JNJ-2482272), under investigation as an anti-inflammatory agent, was orally administered to rats once daily at 60 mg/kg for 6 consecutive days. Despite high plasma exposure after single administration (C of 7.1 M), JNJ-2482272 had plasma concentrations beneath the lower limit of quantification (3 ng/ml) after 6 consecutive days of dosing.

View Article and Find Full Text PDF

Relative free energy perturbation (FEP) methods have become increasingly popular within the pharmaceutical industry; however, despite time constraints within drug discovery cycles, caution should be applied in the deployment of such methods as protein preparation and system setup can greatly impact the accuracy of free energy predictions.

View Article and Find Full Text PDF

Since many projects at pharmaceutical organizations get their start from a high-throughput screening (HTS) campaign, improving the quality of the HTS deck can improve the likelihood of discovering a high-quality lead molecule that can be progressed to a drug candidate. Over the past decade, Janssen has implemented several strategies for external compound acquisition to augment the screening deck beyond the chemical space and number of molecules synthesized for internal projects. In this report, we analyzed the performance of each of those compound collections in the screening campaigns performed internally within Janssen during the last five years.

View Article and Find Full Text PDF

A prevalent observation in high-throughput screening and drug discovery programs is the inhibition of protein function by small-molecule compound aggregation. Here, we present the X-ray structural description of aggregation-based inhibition of a protein-protein interaction involving tumor necrosis factor α (TNFα). An ordered conglomerate of an aggregating small-molecule inhibitor (JNJ525) induces a quaternary structure switch of TNFα that inhibits the protein-protein interaction between TNFα and TNFα receptors.

View Article and Find Full Text PDF

5-Lipoxygenase activating protein (FLAP) plays a critical role in the metabolism of arachidonic acid to leukotriene A4, the precursor to the potent pro-inflammatory mediators leukotriene B4 and leukotriene C4 Studies with small molecule inhibitors of FLAP have led to the discovery of a drug binding pocket on the protein surface, and several pharmaceutical companies have developed compounds and performed clinical trials. Crystallographic studies and mutational analyses have contributed to a general understanding of compound binding modes. During our own efforts, we identified two unique chemical series.

View Article and Find Full Text PDF

During the course of our efforts toward the discovery of human histamine H4 antagonists from a series of 2-aminiopyrimidines, it was noted that a 6-trifluoromethyl group dramatically reduced affinity of the series toward the histamine H4 receptor. This observation was further investigated by synthesizing a series of ligands that varied in pKa of the pyrimidine derived H4 ligands by over five orders of magnitude and the effect on histamine H4 affinity. This trend was then extended to the discovery of C-linked piperidinyl-2-amino pyridines as histamine H4 receptor antagonists.

View Article and Find Full Text PDF

This report discloses the discovery and SAR of a series of 6-alkyl-2-aminopyrimidine derived histamine H4 antagonists that led to the development of JNJ 39758979, which has been studied in phase II clinical trials in asthma and atopic dermatitis. Building on our SAR studies of saturated derivatives from the indole carboxamide series, typified by JNJ 7777120, and incorporating knowledge from the tricyclic pyrimidines led us to the 6-alkyl-2,4-diaminopyrimidine series. A focused medicinal chemistry effort delivered several 6-alkyl-2,4-diaminopyrimidines that behaved as antagonists at both the human and rodent H4 receptor.

View Article and Find Full Text PDF

We present a novel approach for enhancing the diversity of a chemical library rooted on the theory of the wisdom of crowds. Our approach was motivated by a desire to tap into the collective experience of our global medicinal chemistry community and involved four basic steps: (1) Candidate compounds for acquisition were screened using various structural and property filters in order to eliminate clearly nondrug-like matter. (2) The remaining compounds were clustered together with our in-house collection using a novel fingerprint-based clustering algorithm that emphasizes common substructures and works with millions of molecules.

View Article and Find Full Text PDF

Orexin receptor antagonists are being investigated as therapeutic agents for insomnia and addictive disorders. In this study the interactions between the orexin receptors (orexin 1 receptor and orexin 2 receptor), orexin peptides, and small molecule orexin antagonists were explored. To study these phenomena, a variety of mutant orexin receptors was made and tested using receptor binding and functional assays.

View Article and Find Full Text PDF

Utilization of a tetrahydro-pyrimdoazepine core as a bioisosteric replacement for a piperazine-urea resulted in the discovery a novel series of potent antagonists of TRPV1. The tetrahydro-pyrimdoazepines have been identified as having good in vitro and in vivo potency and acceptable physical properties.

View Article and Find Full Text PDF

The present work details the transformation of a series of human histamine H(4) agonists into potent functional antagonists. Replacement of the aminopyrrolidine diamine functionality with a 5,6-fused pyrrolopiperidine ring system led to an antagonist. The dissection of this fused diamine led to the eventual replacement with heterocycles.

View Article and Find Full Text PDF

A series of indeno[1,2-c]pyrazoles were discovered to be the first known inhibitors of heme-regulated eukaryotic initiation factor 2alpha (HRI) kinase. The synthesis, structure-activity relationship profile, and in-vitro pharmacological characterization of this inaugural series of HRI kinase inhibitors are detailed.

View Article and Find Full Text PDF

We have identified and synthesized a series of 2,7-diamino-thiazolo[5,4-d]pyrimidines as TRPV1 antagonists. An exploration of the structure-activity relationships at the 2-, 5-, and 7-positions of the thiazolo[5,4-d]pyrimidine led to the identification of several potent TRPV1 antagonists, including 3, 29, 51, and 57. Compound 3 was orally bioavailable and afforded a significant reversal of carrageenan-induced thermal hyperalgesia with an ED(50)=0.

View Article and Find Full Text PDF

Objective: Percutaneous vascular interventions lead inevitably to a destruction of the endothelial lining at the site of injury. There are conflicting data on the therapeutic benefit of hematopoietic growth factors aiming at mobilisation of circulating endothelial cells to accelerate the reendothelialisation process. Aim of our study was to evaluate the impact of a maximised 7 day-combination therapy with G-CSF plus EPO on the healing process following balloon injury of the rat carotid artery.

View Article and Find Full Text PDF

A novel series of cholecystokinin-2 receptor (CCK-2R) antagonists has been identified, as exemplified by anthranilic sulfonamide 1 (pK(i)=7.6). Pharmacokinetic and stability studies indicated that this series of compounds suffered from metabolic degradation, and that both the benzothiadiazole and piperidine rings were rapidly oxidized by liver enzymes.

View Article and Find Full Text PDF

A novel strategy for the synthesis of cholecystokinin-2 receptor ligands was developed. The route employs a solution-phase synthesis of a series of anthranilic sulfonamides followed by a resin capture purification strategy to produce multi-milligram quantities of compounds for bioassay. The synthesis was used to produce >100 compounds containing various functional groups, highlighting the general applicability of this strategy and to address specific metabolism issues in our CCK-2 program.

View Article and Find Full Text PDF

A series of benzimidazole compounds containing pendant alcohol and amine moieties was found to be active against checkpoint kinase Chk2. These compounds were prepared to examine a potential hydrogen bond interaction with an active site residue and to investigate replacement of a biaryl linker with an aliphatic system in an effort to improve solubility.

View Article and Find Full Text PDF

A high throughput screening campaign revealed compound 1 as a potent antagonist of the human CCK(1) receptor. Here, we report the syntheses and SAR studies of 1,5-diarylpyrazole analogs with various structural modifications of the alkane side chain of the molecule. The difference in affinity between the two enantiomers for the CCK(1) receptor and the flexible nature of the linker led to the design of constrained analogs with increased potency.

View Article and Find Full Text PDF

Both relaxin-3 and its receptor (GPCR135) are expressed predominantly in brain regions known to play important roles in processing sensory signals. Recent studies have shown that relaxin-3 is involved in the regulation of stress and feeding behaviors. The mechanisms underlying the involvement of relaxin-3/GPCR135 in the regulation of stress, feeding, and other potential functions remain to be studied.

View Article and Find Full Text PDF

We have previously reported a novel class of tetrahydroindazoles that display potency against a variety of Gram-positive and Gram-negative bacteria, potentially via interaction with type II bacterial topoisomerases. Herein are reported SAR investigations of this new series. Several compounds possessing broad-spectrum potency were prepared.

View Article and Find Full Text PDF

In an attempt to search for a new class of antibacterial agents, we have discovered a series of pyrazole analogs that possess good antibacterial activity for Gram-positive and Gram-negative organisms via inhibition of type II bacterial topoisomerases. We have investigated the structure-activity relationships of this series, with an emphasis on the length and conformation of the linker. This work led to the identification of tetrahydroindazole analogs, such as compound 1, as the most potent class of compounds.

View Article and Find Full Text PDF

A high throughput screening approach to the identification of selective cholecystokinin-2 receptor (CCK-2R) ligands resulted in the discovery of a novel series of antagonists, represented by 1-[2-[(2,1,3-benzothiadiazol-4-ylsulfonyl)amino]-5-chlorobenzoyl]-piperidine (1; CCK-2R, pK(I) = 6.4). Preliminary exploration of the structure-activity relationships around the anthranilic ring and the amide and sulfonamide moieties led to a nearly 50-fold improvement of receptor affinity and showed a greater than 1000-fold selectivity over the related cholecystokinin-1 receptor.

View Article and Find Full Text PDF