Publications by authors named "Michael H. Nantz"

Article Synopsis
  • - The study explores breath analysis as a quick, non-invasive method for detecting COVID-19 by identifying carbonyl compounds related to inflammation and oxidative stress.
  • - A total of 321 participants, including 141 COVID-19 positive individuals (55 during the alpha wave and 86 during the delta wave), were tested using advanced techniques like ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS).
  • - Results showed high accuracy in detecting COVID-19 patients: 98.4% for the alpha wave and 88.3% for the delta wave, suggesting breath analysis could be a viable tool for rapid COVID-19 screening and future respiratory virus outbreaks.
View Article and Find Full Text PDF

Whereas the close associations of cesium ion with organochlorine compounds have been previously documented, the present report is the first attempt to exploit these interactions to create a trichloroethylene (TCE)-selective sensor. Gold monolayer-protected clusters peripherally functionalized with Cs ions were used to prepare a chemiresistance film on MEMS-fabricated interdigitated electrodes. Vapor sensing properties of the cesium-rich chemiresistor were determined using a panel of chlorinated hydrocarbons including TCE as well as polar and non-polar VOCs for comparison.

View Article and Find Full Text PDF

A 23-subject feasibility study is reported to assess how UV absorbance measurements on exhaled breath samples collected from silicon microreactors can be used to detect COVID-19. The silicon microreactor technology chemoselectively preconcentrates exhaled carbonyl volatile organic compounds and subsequent methanol elution provides samples for analysis. The underlying scientific rationale that viral infection will induce an increase in exhaled carbonyls appears to be supported by the results of the feasibility study.

View Article and Find Full Text PDF

Analysis of volatile organic compounds (VOCs) in exhaled breath (EB) has shown great potential for disease detection including lung cancer, infectious respiratory diseases, and chronic obstructive pulmonary disease. Although many breath sample collection and analytical methods have been developed for breath analysis, analysis of metabolic VOCs in exhaled breath is still a challenge for clinical application. Many carbonyl compounds in exhaled breath are related to the metabolic processes of diseases.

View Article and Find Full Text PDF

The strong, non-covalent interactions between π-systems and cations have been the focus of numerous studies on biomolecule structure and catalysis. These interactions, however, have yet to be explored as a sensing mechanism for detecting trace levels of volatile organic compounds (VOCs). In this article, we provide evidence that cation-π interactions can be used to elicit sensitive and selective chemiresistor responses to aromatic VOCs.

View Article and Find Full Text PDF

The peroxidation of unsaturated fatty acids is a widely recognized metabolic process that creates a complex mixture of volatile organic compounds including aldehydes. Elevated levels of reactive oxygen species in cancer cells promote random lipid peroxidation, which leads to a variety of aldehydes. In the case of lung cancer, many of these volatile aldehydes are exhaled and are of interest as potential markers of the disease.

View Article and Find Full Text PDF

We previously reported that hydroxylated oxime ether lipids (OELs) efficiently deliver functional Dicer substrate siRNAs (DsiRNAs) in cells. Here, we explored in vivo utility of these OELs, using OEL4 as a prototype and report that surface modification of the OEL4 formulations was essential for their in vivo applications. These surface-modified OEL4 formulations were developed by inclusion of various PEGylated lipids.

View Article and Find Full Text PDF

The analysis of toxic volatile organic compounds (VOCs) in environmental air is important because toxic VOCs induce adverse effects on human health. Although gas chromatography- mass spectrometry (GC-MS) is the standard instrument for analysis of trace VOCs in air, this mode of analysis requires preconcentration and cryogenic processes. The preconcentration and subsequent thermal desorption of VOCs require special instruments and a long time of processing sample that significantly limit applications of GC-MS for monitoring indoor and outdoor VOC levels.

View Article and Find Full Text PDF

Benzene is a ubiquitous environmental pollutant. Recent population-based studies suggest that benzene exposure is associated with an increased risk for cardiovascular disease. However, it is unclear whether benzene exposure by itself is sufficient to induce cardiovascular toxicity.

View Article and Find Full Text PDF

Increasing both the sensitivity and selectivity of thiol-functionalized gold nanoparticle chemiresistors remains a challenging issue in the quest to develop real-time gas sensors. The effects of thiol molecular structure on such sensor properties are not well understood. This study investigates the effects of steric as well as electronic effects in a panel of substituted thiol-urea compounds on the sensing properties of thiolate monolayer-protected gold nanoparticle chemiresistors.

View Article and Find Full Text PDF

To enhance catalytic activity, the present study details a general approach for partial thiolate ligand removal from monolayer-protected clusters (MPCs) by straightforward in situ addition of iodine. Two model reactions are examined to illustrate the effects on the catalytic activity of glutathione (SG)-capped Au MPCs serving as a catalyst for the NaBH4 reduction of 4-nitrophenol to 4-aminophenol and SG-capped Pd MPCs serving as a catalyst for the hydrogenation/isomerization of allyl alcohol. Iodine addition promoted partial thiolate ligand removal from both MPCs and improved the catalytic properties, presumably due to greater surface exposure of the metal cores as a result of ligand dissociation.

View Article and Find Full Text PDF

Aminooxy (-ONH2) groups are well known for their chemoselective reactions with carbonyl compounds, specifically aldehydes and ketones. The versatility of aminooxy chemistry has proven to be an attractive feature that continues to stimulate new applications. This work describes application of aminooxy 'click chemistry' on the surface of gold nanoparticles.

View Article and Find Full Text PDF

We report that HCl·DMPU induces the formation of (thiomethyl)methyl carbenium ion from DMSO under mild conditions. Homoallylic amines react with this electrophile to generate 4-chloropiperidines in good yields. The method applies to both aromatic and aliphatic amines.

View Article and Find Full Text PDF

The click-chemistry capture of volatile aldehydes and ketones by ammonium aminooxy compounds has proven to be an efficient means of analyzing the carbonyl subset in complex mixtures, such as exhaled breath or environmental air. In this work, we examine the carbonyl condensation reaction kinetics of three aminooxy compounds with varying β-ammonium ion substitution using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). We determined the activation energies for the reactions of the aminooxy compounds ATM, ADMH and AMAH with a panel of ketones and aldehydes that included acrolein and crotonaldehyde.

View Article and Find Full Text PDF

Chemiresistor-based gas sensors for detection of target volatile organic compounds (VOCs) in air face common challenges of poor sensitivity and selectivity as well as suffering from interference by other constituent gases and/or humidity. This work demonstrates that functionalizing gold nanoparticles (AuNPs) with a designed thiol monolayer improves sensitivity and selectivity of the derived AuNPs gas sensor. We report the synthesis and application of a thiol ligand fitted with both a urea motif and a -butyl end group for functionalizing AuNPs.

View Article and Find Full Text PDF

Aldehydes including formaldehyde, acetaldehyde, and acrolein are toxic organic components of air pollution that cause lung cancer and cardiovascular disease with chronic exposure. The commonly used method for determining the levels of carbonyl compounds based on the derivatizing agent 2,4-dinitrophenylhydrazine is of limited use for ketones and unsaturated aldehydes because of issues such as low capture efficiencies, unstable derivatives, and long sample collection times. This work details the analysis of carbonyls in ambient air by a microreactor approach.

View Article and Find Full Text PDF

Correction for 'Quantitative profiling of carbonyl metabolites directly in crude biological extracts using chemoselective tagging and nanoESI-FTMS' by Pan Deng, et al., Analyst, 2018, 143, 311-322.

View Article and Find Full Text PDF

Electronic cigarettes (e-cigarette) have emerged as a popular electronic nicotine delivery system (ENDS) in the last decade. Despite the absence of combustion products and toxins such as carbon monoxide (CO) and tobacco-specific nitrosamines (TSNA), carbonyls including short-chain, toxic aldehydes have been detected in e-cigarette-derived aerosols up to levels found in tobacco smoke. Given the health concerns regarding exposures to toxic aldehydes, understanding both aldehyde generation in e-cigarette and e-cigarette exposure is critical.

View Article and Find Full Text PDF

The extensive range of chemical structures, wide range of abundances, and chemical instability of metabolites present in the metabolome pose major analytical challenges that are difficult to address with existing technologies. To address these issues, one approach is to target a subset of metabolites that share a functional group, such as ketones and aldehydes, using chemoselective tagging. Here we report a greatly improved chemoselective method for the quantitative analysis of hydrophilic and hydrophobic carbonyl-containing metabolites directly in biological samples.

View Article and Find Full Text PDF

The electronic cigarette (e-cigarette) has emerged as popular electronic nicotine delivery devices (ENDs). However, the general safety and validity of e-cigarettes for nicotine delivery efficacy are still not well understood. This study developed a new method for efficient measurement of nicotine levels in both the liquids (e-liquids) used in e-cigarettes and the aerosols generated from the e-cigarettes.

View Article and Find Full Text PDF

Acetaldehyde, acrolein, and formaldehyde are the principal toxic aldehydes present in cigarette smoke and contribute to the risk of cardiovascular disease and noncancerous pulmonary disease. The rapid growth of the use of electronic cigarettes (e-cigarettes) has raised concerns over emissions of these harmful aldehydes. This work determines emissions of these aldehydes in both free and bound (aldehyde-hemiacetal) forms and other carbonyls from the use of e-cigarettes.

View Article and Find Full Text PDF

Curcumin is known to have immense therapeutic potential but is hindered by poor solubility and rapid degradation in solution. To overcome these shortcomings, curcumin has been conjugated to chitosan through a pendant glutaric anhydride linker using amide bond coupling chemistry. The hybrid polymer has been characterized by UV-visible, fluorescence, and infrared spectroscopies as well as zeta potential measurements and SEM imaging.

View Article and Find Full Text PDF

Objective: Lung cancer dysregulations impart oxidative stress which results in important metabolic products in the form of volatile organic compounds (VOCs) in exhaled breath. The objective of this work is to use statistical classification models to determine specific carbonyl VOCs in exhaled breath as biomarkers for detection of lung cancer.

Materials And Methods: Exhaled breath samples from 85 patients with untreated lung cancer, 34 patients with benign pulmonary nodules and 85 healthy controls were collected.

View Article and Find Full Text PDF

Aim: To evaluate the structure-activity relationship of oxime ether lipids (OELs) containing modifications in the hydrophobic domains (chain length, degree of unsaturation) and hydrophilic head groups (polar domain hydroxyl groups) toward complex formation with siRNA molecules and siRNA delivery efficiency of resulting complexes to a human breast cancer cell line (MDA-MB-231).

Materials & Methods: Ability of lipoplex formation between oxime ether lipids with nucleic acids were examined using biophysical techniques. The potential of OELs to deliver nucleic acids and silence green fluorescent protein (GFP) gene was analyzed using MDA-MB-231 and MDA-MB-231/GFP cells, respectively.

View Article and Find Full Text PDF

Magnetic nanoparticle-supported lipid bilayers (SLBs) constructed around core-shell Fe3O4-SiO2 nanoparticles (SNPs) were prepared and evaluated as potential drug carriers. We describe how an oxime ether lipid can be mixed with SNPs to produce lipid-particle assemblies with highly positive ζ potential. To demonstrate the potential of the resultant cationic SLBs, the particles were loaded with either the anticancer drug doxorubicin or an amphiphilic analogue, prepared to facilitate integration into the supported lipid bilayer, and then examined in studies against MCF-7 breast cancer cells.

View Article and Find Full Text PDF