Publications by authors named "Michael H Stewart"

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

The need for the development of specific and robust methodologies to elucidate the intricate pathological mechanisms of neurodegenerative diseases and discover effective treatments for prevention and remediation is evident. Alzheimer's disease, in particular, has become more prevalent as the global population has aged. β-Secretase, the β-site amyloid precursor protein cleaving enzyme (BACE1), is the protease that produces the β-amyloid peptide, which is considered one of the driving factors of Alzheimer's disease and an important target for treatment development.

View Article and Find Full Text PDF

Co-assembling enzymes with nanoparticles (NPs) into nanoclusters allows them to access channeling, a highly efficient form of multienzyme catalysis. Using pyruvate kinase (PykA) and lactate dehydrogenase (LDH) to convert phosphoenolpyruvic acid to lactic acid with semiconductor quantum dots (QDs) confirms how enzyme cluster formation dictates the rate of coupled catalytic flux (k) across a series of differentially sized/shaped QDs and 2D nanoplatelets (NPLs). Enzyme kinetics and coupled flux were used to demonstrate that by mixing different NP systems into clusters, a >10× improvement in k is observed relative to free enzymes, which is also ≥2× greater than enhancement on individual NPs.

View Article and Find Full Text PDF

Almost all pathogens, whether viral or bacterial, utilize key proteolytic steps in their pathogenesis. The ability to detect a pathogen's genomic material along with its proteolytic activity represents one approach to identifying the pathogen and providing initial evidence of its viability. Here, we report on a prototype biosensor design assembled around a single semiconductor quantum dot (QD) scaffold that is capable of detecting both nucleic acid sequences and proteolytic activity by using orthogonal energy transfer (ET) processes.

View Article and Find Full Text PDF

In mammalian cells, growth factor-induced intracellular signaling and protein synthesis play a critical role in cellular physiology and homeostasis. In the brain's glymphatic system (GS), the water-conducting activity of aquaporin-4 (AQPN-4) membrane channels (expressed in polarized fashion on astrocyte end-feet) mediates the clearance of wastes through the convective transport of fluid and solutes through the perivascular space. The glycoprotein erythropoietin (EPO) has been shown to induce the astrocyte expression of AQPN-4 via signaling through the EPO receptor and the JAK/STAT signaling pathway.

View Article and Find Full Text PDF

Access to efficient enzymatic channeling is desired for improving all manner of designer biocatalysis. We demonstrate that enzymes constituting a multistep cascade can self-assemble with nanoparticle scaffolds into nanoclusters that access substrate channeling and improve catalytic flux by orders of magnitude. Utilizing saccharification and glycolytic enzymes with quantum dots (QDs) as a model system, nanoclustered-cascades incorporating from 4 to 10 enzymatic steps are prototyped.

View Article and Find Full Text PDF

Cell-free synthetic biology has emerged as a valuable tool for the development of rapid, portable biosensors that can be readily transported in the freeze-dried form to the point of need eliminating cold chain requirements. One of the challenges associated with cell-free sensors is the ability to simultaneously detect multiple analytes within a single reaction due to the availability of a limited set of fluorescent and colorimetric reporters. To potentially provide multiplexing capabilities to cell-free biosensors, we designed a modular semiconductor quantum dot (QD)-based reporter platform that is plugged in downstream of the transcription-translation functionality in the cell-free reaction and which converts enzymatic activity in the reaction into distinct optical signals.

View Article and Find Full Text PDF

Nitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery.

View Article and Find Full Text PDF

Purpose Of Review: Rare bone diseases constitute ~ 5% of all known rare diseases and can require complex, multidisciplinary care. Advancing access to current medical knowledge is an important strategy for improving care for rare bone diseases throughout the world. To support this goal, the Rare Bone Disease Alliance launched the Rare Bone Disease TeleECHO in 2019.

View Article and Find Full Text PDF

The size of a quantum-confined nanocrystal determines the energies of its excitonic transitions. Previous work has correlated the diameters of PbS nanocrystals to their excitonic absorption; however, we observe that PbS quantum dots synthesized in saturated dispersions of PbCl can deviate from the previous 1S-1S energy vs diameter curve by 0.8 nm.

View Article and Find Full Text PDF

The design of nanoparticles is critical for their efficient use in many applications ranging from biomedicine to sensing and energy. While shape and size are responsible for the properties of the inorganic nanoparticle core, the choice of ligands is of utmost importance for the colloidal stability and function of the nanoparticles. Moreover, the selection of ligands employed in nanoparticle synthesis can determine their final size and shape.

View Article and Find Full Text PDF

DNA can process information through sequence-based reorganization but cannot typically receive input information from most biological processes and translate that into DNA compatible language. Coupling DNA to a substrate responsive to biological events can address this limitation. A two-component sensor incorporating a chimeric peptide-DNA substrate is evaluated here as a protease-to-DNA signal convertor which transduces protease activity through DNA gates that discriminate between different input proteases.

View Article and Find Full Text PDF

Strong, flexible, and transparent materials have garnered tremendous interest in recent years as materials and electronics manufacturers pursue devices that are bright, flexible, durable, tailorable, and lightweight. Depending on the starting components, polymers fabricated using thiol-yne chemistry have been shown to be exceptionally strong and/or flexible, while also being amenable to modification by the incorporation of nanoparticles. In the present work, novel ligands were synthesized and used to functionalize quantum dots (QDs) of various diameters.

View Article and Find Full Text PDF

Combining biomolecules such as enzymes with nanoparticles has much to offer for creating next generation synergistically functional bionanomaterials. However, almost nothing is known about how these two disparate components interact at this critical biomolecular-materials interface to give rise to improved activity and emergent properties. Here we examine how the nanoparticle surface can influence and increase localized enzyme activity using a designer experimental system consisting of trypsin proteolysis acting on peptide-substrates displayed around semiconductor quantum dots (QDs).

View Article and Find Full Text PDF

We report the development of a quantum dot (QD)-peptide-fullerene (C) electron transfer (ET)-based nanobioconjugate for the visualization of membrane potential in living cells. The bioconjugate is composed of (1) a central QD electron donor, (2) a membrane-inserting peptidyl linker, and (3) a C electron acceptor. The photoexcited QD donor engages in ET with the C acceptor, resulting in quenching of QD photoluminescence (PL) that tracks positively with the number of C moieties arrayed around the QD.

View Article and Find Full Text PDF

An emerging trend with semiconductor quantum dots (QDs) is their use as scaffolds to assemble multiple energy transfer pathways. Examples to date have combined various competitive and sequential Förster resonance energy transfer (FRET) pathways between QDs and fluorescent dyes, luminescent lanthanide complexes, and bioluminescent proteins. Here, we show that the photoluminescence (PL) of QD bioconjugates can also be modulated by a combination of FRET and charge transfer (CT), and characterize the concurrent effects of these mechanistically different pathways using PL measurements at both the ensemble and the single particle level.

View Article and Find Full Text PDF

Luminescent semiconductor quantum dots (QDs) are one of the more popular nanomaterials currently utilized within biological applications. However, what is not widely appreciated is their growing role as versatile energy transfer (ET) donors and acceptors within a similar biological context. The progress made on integrating QDs and ET in biological configurations and applications is reviewed in detail here.

View Article and Find Full Text PDF

Fluorescence-based assays for hydrolases that cleave within the substrate (endopeptidases) are common, while developing substrates for proteases that selectively cleave from peptide termini (exopeptidases) is more challenging, since the termini are specifically recognized by the enzyme and cannot be modified to facilitate a Förster resonance energy transfer (FRET)-based approach. The development of a robust system that enables the quenching of fluorescent particles by simple amino acid side chains would find broad utility for peptide sensors and would be advantageous for exopeptidases. Here we describe a quantum dot (QD)-based electron transfer (ET) sensor that is able to allow direct, quantitative monitoring of both exopeptidase and endopeptidase activity.

View Article and Find Full Text PDF

Significant advances have been made in the development of nanoscale devices capable of exciton transport via Förster resonance energy transfer. Several requirements must be met for effective operation, including a reliable energy-harvesting source along with highly organized, precisely placed energy relay elements. For the latter, biological scaffolds such as DNA provide a customizable, symmetric, and stable structure that can be site-specifically modified with organic fluorophores.

View Article and Find Full Text PDF

The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect.

View Article and Find Full Text PDF

Despite our extensive knowledge of the structure of negatively charged cell surface proteoglycans and sialoglycoconjugates in the brain, we have little understanding of how their negative charge contributes to brain function. We have previously shown that intensely photoluminescent 9-nm diameter quantum dots (QDs) with a CdSe core, a ZnS shell, and a negatively charged compact molecular ligand coating (CL4) selectively target neurons rather than glia. We now provide an explanation for this selective neuronal delivery.

View Article and Find Full Text PDF

As a specific example of the enhancement of enzymatic activity that can be induced by nanoparticles, we investigate the hydrolysis of the organophosphate paraoxon by phosphotriesterase (PTE) when the latter is displayed on semiconductor quantum dots (QDs). PTE conjugation to QDs underwent extensive characterization including structural simulations, electrophoretic mobility shift assays, and dynamic light scattering to confirm orientational and ratiometric control over enzyme display which appears to be necessary for enhancement. PTE hydrolytic activity was then examined when attached to ca.

View Article and Find Full Text PDF

Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells.

View Article and Find Full Text PDF

While semiconductor quantum dots (QDs) have been used successfully in numerous single particle tracking (SPT) studies due to their high photoluminescence efficiency, photostability, and broad palette of emission colors, conventional QDs exhibit fluorescence intermittency or 'blinking,' which causes ambiguity in particle trajectory analysis and limits tracking duration. Here, non-blinking 'giant' quantum dots (gQDs) are exploited to study IgE-FcRI receptor dynamics in live cells using a confocal-based 3D SPT microscope. There is a 7-fold increase in the probability of observing IgE-FcRI for longer than 1 min using the gQDs compared to commercially available QDs.

View Article and Find Full Text PDF

Phosphotriesterase was engineered into a spontaneously forming trimer by appending it to a synthetic collagen-like triple-helix motif. Enzymatic hydrolysis of the insecticide and organophosphate nerve agent simulant paraoxon was then examined. Assembling the phosphotriesterase trimer onto semiconductor quantum dots increased the enzyme's catalytic rate and efficiency.

View Article and Find Full Text PDF