The giant striated muscle protein titin integrates into the developing sarcomere to form a stable myofilament system that is extended as myocytes fuse. The logistics underlying myofilament assembly and disassembly have started to emerge with the possibility to follow labeled sarcomere components. Here, we generated the mCherry knock-in at titin's Z-disk to study skeletal muscle development and remodeling.
View Article and Find Full Text PDFDilated cardiomyopathy is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of patients harbor heritable mutations which are amenable to CRISPR-based gene therapy. However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart.
View Article and Find Full Text PDFHeart failure with preserved ejection fraction (HFpEF) is prevalent and deadly, but so far, there is no targeted therapy. A main contributor to the disease is impaired ventricular filling, which we improved with antisense oligonucleotides (ASOs) targeting the cardiac splice factor RBM20. In adult mice with increased wall stiffness, weekly application of ASOs over 2 months increased expression of compliant titin isoforms and improved cardiac function as determined by echocardiography and conductance catheter.
View Article and Find Full Text PDFProximity proteomics has greatly advanced the analysis of native protein complexes and subcellular structures in culture, but has not been amenable to study development and disease in vivo. Here, we have generated a knock-in mouse with the biotin ligase (BioID) inserted at titin's Z-disc region to identify protein networks that connect the sarcomere to signal transduction and metabolism. Our census of the sarcomeric proteome from neonatal to adult heart and quadriceps reveals how perinatal signaling, protein homeostasis and the shift to adult energy metabolism shape the properties of striated muscle cells.
View Article and Find Full Text PDFAims: Heart failure with preserved ejection fraction (HFpEF) and pathological cardiac aging share a complex pathophysiology, including extracellular matrix remodelling (EMR). Protease-activated receptor 2 (PAR2) deficiency is associated with EMR. The roles of PAR1 and PAR2 have not been studied in HFpEF, age-dependent cardiac fibrosis, or diastolic dysfunction (DD).
View Article and Find Full Text PDFBackground: Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect.
View Article and Find Full Text PDFDiastolic dysfunction is increasingly prevalent in our ageing society and an important contributor to heart failure. The giant protein titin could serve as a therapeutic target, as its elastic properties are a main determinant of cardiac filling in diastole. This study aimed to develop a high throughput pharmacological screen to identify small molecules that affect titin isoform expression through differential inclusion of exons encoding the elastic PEVK domains.
View Article and Find Full Text PDFThe African naked mole-rat's () social and subterranean lifestyle generates a hypoxic niche. Under experimental conditions, naked mole-rats tolerate hours of extreme hypoxia and survive 18 minutes of total oxygen deprivation (anoxia) without apparent injury. During anoxia, the naked mole-rat switches to anaerobic metabolism fueled by fructose, which is actively accumulated and metabolized to lactate in the brain.
View Article and Find Full Text PDFUnlabelled: Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin's elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target.
View Article and Find Full Text PDFCardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mice which express truncated cardiac titins lacking the unique elastic N2B region. Compared with myofibrils from wild-type mice, myofibrils from knockout and heterozygous mice exhibit increased passive myofibrillar stiffness.
View Article and Find Full Text PDFMutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and quantitative proteomics in cell culture and rat and human hearts to examine how RBM20 regulates alternative splicing in the heart. Our analyses revealed the presence of a distinct RBM20 RNA-recognition element that is predominantly found within intronic binding sites and linked to repression of exon splicing with RBM20 binding near 3' and 5' splice sites.
View Article and Find Full Text PDFAlternative splicing has a major role in cardiac adaptive responses, as exemplified by the isoform switch of the sarcomeric protein titin, which adjusts ventricular filling. By positional cloning using a previously characterized rat strain with altered titin mRNA splicing, we identified a loss-of-function mutation in the gene encoding RNA binding motif protein 20 (Rbm20) as the underlying cause of pathological titin isoform expression. The phenotype of Rbm20-deficient rats resembled the pathology seen in individuals with dilated cardiomyopathy caused by RBM20 mutations.
View Article and Find Full Text PDFViscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in vivo.
View Article and Find Full Text PDFThe giant muscle protein titin is an essential structural component of the sarcomere. It forms a continuous periodic backbone along the myofiber that provides resistance to mechanical strain. Thus, the titin filament has been regarded as a blueprint for sarcomere assembly and a prerequisite for stability.
View Article and Find Full Text PDFRationale: The giant protein titin plays key roles in myofilament assembly and determines the passive mechanical properties of the sarcomere. The cardiac titin molecule has 2 mayor elastic elements, the N2B and the PEVK region. Both have been suggested to determine the elastic properties of the heart with loss of function data only available for the N2B region.
View Article and Find Full Text PDFThe Coxsackievirus-adenovirus receptor (CAR) is known for its role in virus uptake and as a protein of the tight junction. It is predominantly expressed in the developing brain and heart and reinduced upon cardiac remodeling in heart disease. So far, the physiological functions of CAR in the adult heart are largely unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2007
Titin is a giant protein that is in charge of the assembly and passive mechanical properties of the sarcomere. Cardiac titin contains a unique N2B region, which has been proposed to modulate elasticity of the titin filament and to be important for hypertrophy signaling and the ischemic stress response through its binding proteins FHL2 and alphaB-crystallin, respectively. To study the role of the titin N2B region in systole and diastole of the heart, we generated a knockout (KO) mouse deleting only the N2B exon 49 and leaving the remainder of the titin gene intact.
View Article and Find Full Text PDF