Publications by authors named "Michael H Limberg"

Corynebacterium glutamicum is well-known as an industrial workhorse, most notably for its use in the bulk production of amino acids in the feed and food sector. Previous studies of the effect of gradients in scale-down reactors with complex media disclosed an accumulation of several carboxylic acids and a parallel decrease of growth and product accumulation. This study, therefore, addresses the impact of carboxylic acids, for example, acetate and l-lactate, on the cultivation of the cadaverine producing strain C.

View Article and Find Full Text PDF

Sustainable and eco-efficient alternatives for the production of platform chemicals, fuels and chemical building blocks require the development of stable, reusable and recyclable biocatalysts. Here we present a novel concept for the biocatalytic production of 1,5-diaminopentane (DAP, trivial name: cadaverine) using catalytically active inclusion bodies (CatIBs) of the constitutive L-lysine decarboxylase from E. coli (EcLDCc-CatIBs) to process L-lysine-containing culture supernatants from Corynebacterium glutamicum.

View Article and Find Full Text PDF

The presence of complex gradients for, e.g., nutrients, oxygen or pH in industrial scale fed batch processes are a major challenge for process performance.

View Article and Find Full Text PDF

Performance losses during scale-up are described since decades, but are still one of the major obstacles for industrial bioprocess development. Consequently, robustness to inhomogeneous cultivation environments is an important quality of industrial production organisms. Especially, Corynebacterium glutamicum was proven to have an outstanding resistance against rapid changes of oxygen and substrate availability as occurring in industrial scale bioreactors.

View Article and Find Full Text PDF