Publications by authors named "Michael H Kido"

Based upon ecological data provided by a 6-year study of native species assemblage structure and function in near-pristine Limahuli Stream (Kauai), The Hawaii Stream Index of Biological Integrity (HS-IBI) incorporates 11 metrics covering five ecological categories (taxonomic richness, sensitive species, reproductive capacity, trophic-habitat capacity, and tolerance capacity). The HS-IBI was shown to effectively distinguish stream biological condition on a continuum from undisturbed (near-pristine) to severely impaired in sampling of 39 sites (6 estuarine reaches) on 18 Hawaiian streams located on all major islands. A significant relationship was validated between relative levels of human impact occurring within-watersheds (determined through use of a landscape indicator) and IBI ratings with metrics responding predictably to gradients of human influence.

View Article and Find Full Text PDF

A linkage between the condition of watersheds and adjacent nearshore coral reef communities is an assumed paradigm in the concept of integrated coastal management. However, quantitative evidence for this "catchment to sea" or "ridge to reef" relationship on oceanic islands is lacking and would benefit from the use of appropriate marine and terrestrial landscape indicators to quantify and evaluate ecological status on a large spatial scale. To address this need, our study compared the Hawai'i Watershed Health Index (HI-WHI) and Reef Health Index (HI-RHI) derived independently of each other over the past decade.

View Article and Find Full Text PDF

Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands.

View Article and Find Full Text PDF