Publications by authors named "Michael H Allsopp"

Hybrid populations of Africanized honey bees (-hybrids), notable for their defensive behaviour, have spread rapidly throughout South and North America since their unintentional introduction. Although their migration has slowed, the large-scale trade and movement of honey bee queens and colonies raise concern over the accidental importation of -hybrids to previously unoccupied areas. Therefore, developing an accurate and robust assay to detect -hybrids is an important first step toward mitigating risk.

View Article and Find Full Text PDF

The origin of the western honey bee has been intensely debated. Addressing this knowledge gap is essential for understanding the evolution and genetics of one of the world’s most important pollinators. By analyzing 251 genomes from 18 native subspecies, we found support for an Asian origin of honey bees with at least three expansions leading to African and European lineages.

View Article and Find Full Text PDF

The ability to clone oneself has clear benefits-no need for mate hunting or dilution of one's genome in offspring. It is therefore unsurprising that some populations of haplo-diploid social insects have evolved thelytokous parthenogenesis-the virgin birth of a female. But thelytokous parthenogenesis has a downside: the loss of heterozygosity (LoH) as a consequence of genetic recombination.

View Article and Find Full Text PDF

Deformed wing virus (DWV) is an emerging honeybee pathogen that has appeared across the globe in the past 40 years. When transmitted by the parasitic varroa mite, it has been associated with the collapse of millions of colonies throughout the Northern Hemisphere. However, despite the presence of the mite in the Southern Hemisphere, infested colonies survive.

View Article and Find Full Text PDF

In honeybees, the ability of workers to produce daughters asexually, i.e., thelytokous parthenogenesis, is restricted to a single subspecies inhabiting the Cape region of South Africa, Apis mellifera capensis.

View Article and Find Full Text PDF

The Kinship Theory of Genomic Imprinting (KTGI) posits that, in species where females mate with multiple males, there is selection for a male to enhance the reproductive success of his offspring at the expense of other males and his mating partner. Reciprocal crosses between honey bee subspecies show parent-of-origin effects for reproductive traits, suggesting that males modify the expression of genes related to female function in their female offspring. This effect is likely to be greater in the Cape honey bee (Apis mellifera capensis), because a male's daughters have the unique ability to produce female offspring that can develop into reproductive workers or the next queen without mating.

View Article and Find Full Text PDF

Inbreeding (the mating between closely related individuals) often has detrimental effects that are associated with loss of heterozygosity at overdominant loci, and the expression of deleterious recessive alleles. However, determining which loci are detrimental when homozygous, and the extent of their phenotypic effects, remains poorly understood. Here, we utilize a unique inbred population of clonal (thelytokous) honey bees, Apis mellifera capensis, to determine which loci reduce individual fitness when homozygous.

View Article and Find Full Text PDF

The haplodiploid system of sex determination of Hymenoptera acts as an exaptation for species to evolve novel forms of asexual reproduction including thelytoky (clonal offspring of the mother). During normal reproduction in Hymenoptera, three of the four products of meiosis that are present in newly-laid eggs are lost as polar bodies, while the remaining pronucleus either develops as a haploid male or fuses with a sperm nucleus to produce a diploid zygote. In contrast, in thelytokous reproduction, which is uncommon but taxonomically widespread, two of the four products of meiosis fuse, as if one acted as a sperm.

View Article and Find Full Text PDF

In the social insects, ovary state (the presence or absence of mature oocytes) and ovary size (the number of ovarioles) are often used as proxies for the reproductive capacity of an individual worker. Ovary size is assumed to be fixed post-eclosion whereas ovary state is demonstrably plastic post-eclosion. Here, we show that in fact ovary size declines as honeybee workers age.

View Article and Find Full Text PDF
Article Synopsis
  • Intersexual genomic conflict in honey bees can cause unequal expression of parental alleles, indicating the presence of genomic imprinting, with DNA methylation potentially playing a key role in this process.
  • A study comparing genome-wide methylation patterns revealed that embryos produced sexually had a higher number of hypermethylated genes compared to embryos produced through asexual reproduction, supporting the theory that paternal genome contributes to increased methylation.
  • Findings indicate that while methylation patterns are influenced by parental origin in general, specific genes like Stan exhibit allele-specific methylation that is not dependent on the parent of origin, highlighting complexities in understanding genomic imprinting and methylation roles.
View Article and Find Full Text PDF

The honeybee, Apis mellifera, is the world's most important pollinator and is ubiquitous in most agricultural ecosystems. Four major evolutionary lineages and at least 24 subspecies are recognized. Commercial populations are mainly derived from subspecies originating in Europe (75-95%).

View Article and Find Full Text PDF

Correlations between fitness and genome-wide heterozygosity (heterozygosity-fitness correlations, HFCs) have been reported across a wide range of taxa. The genetic basis of these correlations is controversial: do they arise from genome-wide inbreeding ("general effects") or the "local effects" of overdominant loci acting in linkage disequilibrium with neutral loci? In an asexual thelytokous lineage of the Cape honey bee (Apis mellifera capensis), the effects of inbreeding have been homogenized across the population, making this an ideal system in which to detect overdominant loci, and to make inferences about the importance of overdominance on HFCs in general. Here we investigate the pattern of zygosity along two chromosomes in 42 workers from the clonal Cape honey bee population.

View Article and Find Full Text PDF

Apis mellifera capensis is unique among honeybees in that unmated workers can produce pseudo-clonal female offspring via thelytokous parthenogenesis. Workers use this ability to compete among themselves and with their queen to be the mother of new queens. Males could therefore enhance their reproductive success by imprinting genes that enhance fertility in their daughter workers.

View Article and Find Full Text PDF

Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre-emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season.

View Article and Find Full Text PDF

An asexual lineage that reproduces by automictic thelytokous parthenogenesis has a problem: rapid loss of heterozygosity resulting in effective inbreeding. Thus, the circumstances under which rare asexual lineages thrive provide insights into the trade-offs that shape the evolution of alternative reproductive strategies across taxa. A socially parasitic lineage of the Cape honey bee, Apis mellifera capensis, provides an example of a thelytokous lineage that has endured for over two decades.

View Article and Find Full Text PDF

Unmated workers of the Cape honeybee Apis mellifera capensis can produce female offspring including daughter queens. As worker-laid queens are produced asexually, we wondered whether these asexually produced individuals reproduce asexually or sexually. We sampled 11 colonies headed by queens known to be the clonal offspring of workers and genotyped 23 worker offspring from each queen at 5 microsatellite loci.

View Article and Find Full Text PDF

The honey bee population of South Africa is divided into two subspecies: a northern population in which queenless workers reproduce arrhenotokously and a southern one in which workers reproduce thelytokously. A hybrid zone separates the two, but on at least three occasions the northern population has become infested by reproductive workers derived from the southern population. These parasitic workers lay in host colonies parthenogenetically, resulting in yet more parasites.

View Article and Find Full Text PDF

During reproductive swarming, some workers of the Cape honey bee, Apis mellifera capensis, lay eggs in queen cells, many of which are reared to maturity. However, it is unknown if workers are able to lay in queen cells immediately after queen loss during an episode of emergency queen rearing. In this study we experimentally de-queened colonies and determined the maternity of larvae and pupae that were reared as queens.

View Article and Find Full Text PDF

Reproduction by workers is rare in honey bee colonies that have an active queen. By not producing their own offspring and preventing other workers from producing theirs, workers are thought to increase their inclusive fitness due to their higher average relatedness towards queen-produced male offspring compared with worker-produced male offspring. But there is one exception.

View Article and Find Full Text PDF

The subspecies of honeybee indigenous to the Cape region of South Africa, Apis mellifera capensis, is unique because a high proportion of unmated workers can lay eggs that develop into females via thelytokous parthenogenesis involving central fusion of meiotic products. This ability allows pseudoclonal lineages of workers to establish, which are presently widespread as reproductive parasites within the honeybee populations of South Africa. Successful long-term propagation of a parthenogen requires the maintenance of heterozygosity at the sex locus, which in honeybees must be heterozygous for the expression of female traits.

View Article and Find Full Text PDF

When workers of the thelytokous Cape honeybee, Apis mellifera capensis, come into contact with colonies of the neighboring arrhenotokous subspecies Apis mellifera scutellata, they can become lethal social parasites. We examined the inheritance of 3 traits (number of ovarioles, number of basitarsal hairs, and size of spermatheca) that are thought to be associated with reproductive potential in A. m.

View Article and Find Full Text PDF

The Cape bee (Apis mellifera capensis) is unique among honeybees in that workers can lay eggs that instead of developing into males develop into females via thelytokous parthenogenesis. We show that this ability allows workers to compete directly with the queen over the production of new queens. Genetic analyses using microsatellites revealed that 23 out of 39 new queens produced by seven colonies were offspring of workers and not the resident queen.

View Article and Find Full Text PDF

The mandibular gland secretions of Apis mellifera capensis virgin queens were analyzed by gas chromatography-mass spectroscopy. Changes in the patterns of the mandibular gland volatiles of A. m.

View Article and Find Full Text PDF

High-fidelity PCR of 16S rRNA sequences was used to identify bacteria associated with worker adults of the honeybee subspecies Apis mellifera capensis and Apis mellifera scutellata. An expected approximately 1.5-kb DNA band, representing almost the entire length of the 16S rRNA gene, was amplified from both subspecies and cloned.

View Article and Find Full Text PDF