Magnetic particles are widely used as labels in magnetoresistive sensors. To use magnetic particles as labels, several important characteristics should be considered, such as superparamagnetism, a high magnetic moment per particle (m), facile surface functionalization and biomolecule immobilization, colloidal stability, and analyte specificity. In this paper, we describe the preparation of magnetic labels with a high m, using colloidal assemblies of superparamagnetic zinc ferrite nanoparticles (ZFNPs, ∼9 nm).
View Article and Find Full Text PDFIn this paper, we describe a novel method for analyte quantitation that does not rely on calibrants, internal standards, or calibration curves but, rather, leverages the relationship between disparate and predictable surface-directed analyte flux to an array of sensing addresses and a measured resultant signal. To reduce this concept to practice, we fabricated two flow cells such that the mean linear fluid velocity, U, was varied systematically over an array of electrodes positioned along the flow axis. This resulted in a predictable variation of the address-directed flux of a redox analyte, ferrocenedimethanol (FDM).
View Article and Find Full Text PDFIn this work, we describe an approach to determine the distance separating a magnetic address from a scanning magnetoresistive sensor, a critical adjustable parameter for certain bioassay analyses where magnetic nanoparticles are used as labels. Our approach is leveraged from the harmonic ratio method (HRM), a method used in the hard drive industry to control the distance separating a magnetoresistive read head from its data platter with nanometer resolution. At the heart of the HRM is an amplitude comparison of a signal's fundamental frequency to that of its harmonics.
View Article and Find Full Text PDFMaxillary hypoplasia that necessitates surgical advancement affects approximately 25% of patients born with cleft lip and palate. Syndromic conditions such as Crouzon may also be accompanied by significant maxillary hypoplasia. Severe maxillary hypoplasia can result in airway obstruction, malocclusion, proptosis, and facial disfigurement.
View Article and Find Full Text PDFStable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, because of the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high-moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, that is, >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper.
View Article and Find Full Text PDFProteomic analyses of readily obtained human fluids (e.g., serum, urine, and saliva) indicate that the diagnosis of complex diseases will be enhanced by the simultaneous measurement of multiple biomarkers from such samples.
View Article and Find Full Text PDFBackground: Maxillary advancement in patients with orofacial clefts or craniofacial syndromes can be technically challenging. We present our experience with the use of adjunctive stabilization materials and techniques in patients undergoing single-stage maxillary advancements of more than 6.0 mm.
View Article and Find Full Text PDFThis paper describes the development and preliminary testing of a competitive surface-enhanced Raman scattering (SERS) immunoassay for calcitriol, the 1,25-dihydroxy metabolite (1,25-(OH)(2)-D(3)) of vitamin D(3). Deficiencies in 1,25-(OH)(2)-D have been linked to renal disease, while elevations are linked to hypercalcemia. Thus, there has been a sharp increase in the clinical demand for measurements of this metabolite.
View Article and Find Full Text PDFMicrofabricated devices formed from alternating layers of magnetic and nonmagnetic materials at combined thicknesses of a few hundred nanometers exhibit a phenomenon known as the giant magnetoresistance effect. Devices based on this effect are known as giant magnetoresistive (GMR) sensors. The resistance of a GMR is dependent on the strength of an external magnetic field, which has resulted in the widespread usage of such platforms in high-speed, high-data density storage drives.
View Article and Find Full Text PDFThis paper describes efforts aimed at setting the stage for the application of giant magnetoresistance sensor (GMRs) networks as readers for quantification of biolytes selectively captured and then labeled with superparamagnetic particles on a scanned chip-scale array. The novelty and long-range goal of this research draws from the potential development of a card-swipe instrument through which an array of micrometer-sized, magnetically tagged addresses (i.e.
View Article and Find Full Text PDFThin structures of alternating magnetic and nonmagnetic layers with a total thickness of a few hundred nanometers exhibit a phenomenon known as giant magnetoresistance. The resistance of microfabricated giant magnetoresistors (GMRs) is dependent on the strength of an external magnetic field. This paper examines magnetic labeling methodologies and surface derivatization approaches based on protein-protein binding that are aimed at forming a general set of protocols to move GMR concepts into the bioanalytical arena.
View Article and Find Full Text PDFThis paper discusses continued studies and new analytical applications of a recently developed three-electrode controlled-potential electrochemical cell incorporated into an electrospray ion source (Van Berkel, G. J.; Asano, K.
View Article and Find Full Text PDFThis article describes the components, operation, and use of a porous flow-through electrode emitter in an electrospray ion source. This emitter electrode geometry provided enhanced mass transport to the electrode surface to exploit the inherent electrochemistry of the electrospray process for efficient analyte oxidation at flow rates up to 800 microL/min. An upstream current loop in the electrospray source circuit, formed by a grounded contact to solution upstream of the emitter electrode, was utilized to increase the magnitude of the total current at the emitter electrode to overcome current limits to efficient oxidation.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2004
Analytical techniques used for multivariate analysis of endogenous metabolites in biological systems (e.g., metabolomics, metabonomics) must be capable of accurately and selectively monitoring many known and unknown molecules that span a diverse chemical spectrum and over extremely large dynamic concentration ranges.
View Article and Find Full Text PDFThe inherent electrochemistry occurring at the emitter electrode of an electrospray ion source was effectively controlled by incorporating a three-electrode controlled-potential electrochemical cell into the controlled-current electrospray emitter circuit. Two different basic cell designs were investigated to accomplish this control, namely, a planar flow-by working electrode and a porous flow-through working electrode design, each operated with a potentiostat floated at the electrospray high voltage. Control of the analyte electrochemistry was tested using the indole alkaloid reserpine, which is often used to test the specifications of electrospray mass spectrometry instrumentation.
View Article and Find Full Text PDF