Background: Pathomics facilitates automated, reproducible and precise histopathology analysis and morphological phenotyping. Similar to molecular omics, pathomics datasets are high-dimensional, but also face large outlier variability and inherent data missingness, making quick and comprehensible data analysis challenging. To facilitate pathomics data analysis and interpretation as well as support a broad implementation we developed tRigon (Toolbox foR InteGrative (path-)Omics data aNalysis), a Shiny application for fast, comprehensive and reproducible pathomics analysis.
View Article and Find Full Text PDFAlthough clinical applications represent the next challenge in single-cell genomics and digital pathology, we still lack computational methods to analyze single-cell or pathomics data to find sample-level trajectories or clusters associated with diseases. This remains challenging as single-cell/pathomics data are multi-scale, i.e.
View Article and Find Full Text PDF