The accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80% of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates to perform its role in crossover resolution.
View Article and Find Full Text PDFThe accurate segregation of homologous chromosomes during the Meiosis I reductional division in most sexually reproducing eukaryotes requires crossing over between homologs. In baker's yeast approximately 80 percent of meiotic crossovers result from Mlh1-Mlh3 and Exo1 acting to resolve double-Holliday junction (dHJ) intermediates in a biased manner. Little is known about how Mlh1-Mlh3 is recruited to recombination intermediates and whether it interacts with other meiotic factors prior to its role in crossover resolution.
View Article and Find Full Text PDFIn most sexually reproducing organisms crossing over between chromosome homologs during meiosis is essential to produce haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday junction (dHJ) intermediates. This dHJ resolution step involves the actions of Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) is a novel disease with various complications involving different organ systems caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. While the respiratory complications associated with COVID-19 have been well publicized, our understanding of the nonpulmonary complications of COVID-19 is lacking. Herein we present a case of a middle-aged woman who developed myopericarditis, pericardial effusion, and tamponade in the setting of COVID-19 infection.
View Article and Find Full Text PDFVesicles and other bilayered membranous structures can self-assemble from single hydrocarbon chain amphiphiles. Their formation and stability are highly dependent on experimental conditions such as ionic strength, pH, and temperature. The addition of divalent cations, for example, often results in the disruption of vesicles made of a single fatty acid species through amphiphile precipitation.
View Article and Find Full Text PDF