Robots and other assistive technologies have a huge potential to help society in domains ranging from factory work to healthcare. However, safe and effective control of robotic agents in these environments is complex, especially when it involves close interactions and multiple actors. We propose an effective framework for optimizing the behaviour of robots and complementary assistive technologies in systems comprising a mix of human and technological agents with numerous high-level goals.
View Article and Find Full Text PDFThe rise of deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data. Unfortunately, it is prohibitively expensive to generate such data sets on a physical platform. Therefore, state-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive and subsequently transfer the knowledge to the real robot (sim-to-real).
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
April 2021
Learning robot control policies from physics simulations is of great interest to the robotics community as it may render the learning process faster, cheaper, and safer by alleviating the need for expensive real-world experiments. However, the direct transfer of learned behavior from simulation to reality is a major challenge. Optimizing a policy on a slightly faulty simulator can easily lead to the maximization of the 'Simulation Optimization Bias' (SOB).
View Article and Find Full Text PDF