Publications by authors named "Michael Germuska"

BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBV) rather than CVR.

View Article and Find Full Text PDF

Cerebral energy deficiency is increasingly recognised as an important feature of multiple sclerosis (MS). Until now, we have lacked non-invasive imaging methods to quantify energy utilisation and mitochondrial function in the human brain. Here, we used novel dual-calibrated functional magnetic resonance imaging (dc-fMRI) to map grey-matter (GM) deoxy-haemoglobin sensitive cerebral blood volume (CBV), cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen consumption (CMRO) in patients with MS (PwMS) and age/sex matched controls.

View Article and Find Full Text PDF

One promising approach for mapping CMRO is dual-calibrated functional MRI (dc-fMRI). This method exploits the Fick Principle to combine estimates of CBF from ASL, and OEF derived from BOLD-ASL measurements during arterial O and CO modulations. Multiple gas modulations are required to decouple OEF and deoxyhemoglobin-sensitive blood volume.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain's metabolic oxygen consumption (CMRO), which is essential for understanding and monitoring neural function in both health and disease. However, in depth study of oxygen metabolism with MRI has so far been hindered by the lack of robust methods. One MRI method of mapping CMRO is based on the simultaneous acquisition of cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) weighted images during respiratory modulation of both oxygen and carbon dioxide.

View Article and Find Full Text PDF

: Identify alterations in cerebrovascular reactivity (CVR) based on the history of sport-related concussion (SRC). Further explore possible mechanisms underlying differences in vascular physiology using hemodynamic parameters modeled using calibrated magnetic resonance imaging (MRI). : End-tidal targeting and dual-echo MRI were combined to probe hypercapnic and hyperoxic challenges in athletes with (n = 32) and without (n = 31) a history of SRC.

View Article and Find Full Text PDF

As energy metabolism in the brain is largely oxidative, the measurement of cerebral metabolic rate of oxygen consumption (CMRO) is a desirable biomarker for quantifying brain activity and tissue viability. Currently, PET techniques based on oxygen isotopes are the gold standard for obtaining whole brain CMRO maps. Among MRI techniques that have been developed as an alternative are dual calibrated fMRI (dcFMRI) methods, which exploit simultaneous measurements of BOLD and ASL signals during a hypercapnic-hyperoxic experiment to modulate brain blood flow and oxygenation.

View Article and Find Full Text PDF

This study aims to map the acute effects of caffeine ingestion on grey matter oxygen metabolism and haemodynamics with a novel MRI method. Sixteen healthy caffeine consumers (8 males, age=24.7±5.

View Article and Find Full Text PDF

Purpose To assess the repeatability of apparent diffusion coefficient (ADC) estimates in extracranial soft-tissue diffusion-weighted magnetic resonance imaging across a wide range of imaging protocols and patient populations. Materials and Methods Nine prospective patient studies and one prospective volunteer study, performed between 2006 and 2016 with research ethics committee approval and written informed consent from each subject, were included in this single-institution study. A total of 141 tumors and healthy organs were imaged twice (interval between repeated examinations, 45 minutes to 10 days, depending the on study) to assess the repeatability of median and mean ADC estimates.

View Article and Find Full Text PDF

Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2.

View Article and Find Full Text PDF

Background: Functional magnetic resonance imaging (MRI) studies have shown that APOE ε2- and ε4-carriers have similar patterns of blood-oxygenation-level-dependent (BOLD) activation suggesting that we need to look beyond the BOLD signal to link APOE's effect on the brain to Alzheimer's disease (AD)-risk.

Methods: We evaluated APOE-related differences in BOLD activation in response to a memory task, cerebrovascular reactivity using a CO2-inhalation challenge (CO2-CVR), and the potential contribution of CO2-CVR to the BOLD signal.

Results: APOE ε4-carriers had the highest task-related hippocampal BOLD signal relative to non-carriers.

View Article and Find Full Text PDF

Functional magnetic resonance imaging measures signal increases arising from a variety of interrelated effects and physiological sources. Recently there has been some success in disentangling this signal in order to quantify baseline physiological parameters, including the resting oxygen extraction fraction (OEF), cerebral blood volume (CBV) and mean vessel size. However, due to the complicated nature of the signal, each of these methods relies on certain physiological assumptions to derive a solution.

View Article and Find Full Text PDF

Vessel size imaging (VSI) is a magnetic resonance imaging (MRI) technique that aims to provide quantitative measurements of tissue microvasculature. An emerging variation of this technique uses the blood oxygenation level-dependent (BOLD) effect as the source of the imaging contrast. Gas challenges have the advantage over contrast injection techniques in that they are noninvasive and easily repeatable because of the fast washout of the contrast.

View Article and Find Full Text PDF

Measurement of cerebrovascular reactivity (CVR) can give valuable information about existing pathology and the risk of adverse events, such as stroke. A common method of obtaining regional CVR values is by measuring the blood flow response to carbon dioxide (CO2)-enriched air using arterial spin labeling (ASL) or blood oxygen level-dependent (BOLD) imaging. Recently, several studies have used carbogen gas (containing only CO2 and oxygen) as an alternative stimulus.

View Article and Find Full Text PDF

Hyperoxia is known to cause an increase in the blood oxygenation level dependent (BOLD) signal that is primarily localised to the venous vasculature. This contrast mechanism has been proposed as a way to measure venous cerebral blood volume (CBVv) without the need for more invasive contrast media. In the existing method the analysis modelled the data as a dynamic contrast agent experiment, with the assumption that the BOLD signal of tissue was dominated by intravascular signal.

View Article and Find Full Text PDF

Purpose: The hepatocyte growth factor/c-MET axis is implicated in tumor cell proliferation, survival, and angiogenesis. ARQ 197 is an oral, selective, non-adenosine triphosphate competitive c-MET inhibitor. A phase I trial of ARQ 197 was conducted to assess safety, tolerability, and target inhibition, including intratumoral c-MET signaling, apoptosis, and angiogenesis.

View Article and Find Full Text PDF

Objective: The purpose of this study was to compare apparent diffusion coefficients, metabolic ratios, and vascularity values within histologically defined prostate tumors with those in nontumor tissue to determine which functional parameter or combination of parameters is best for differentiating tumor from nontumor tissue.

Subjects And Methods: Twenty patients due for prostatectomy underwent endorectal MRI at 1.5 T.

View Article and Find Full Text PDF

Prefrontal pathways exert diverse effects in widespread cortical areas, issuing projections both to the middle layers and to layer I, which are anatomically and functionally distinct. Here we addressed the still unanswered question of whether cortical pathways that terminate in different layers are distinct at the synaptic level. We addressed this issue using as a model system the robust and functionally significant pathways from prefrontal areas 10 and 32 to superior temporal areas in rhesus monkeys.

View Article and Find Full Text PDF