Publications by authors named "Michael Garvin"

Background: Opioid addiction is a worldwide public health crisis. In the United States, for example, opioids cause more drug overdose deaths than any other substance. Yet, opioid addiction treatments have limited efficacy, meaning that additional treatments are needed.

View Article and Find Full Text PDF

A fundamental understanding of the underlying mechanisms involved in biological invasions is crucial to developing effective risk assessment and control measures against invasive species. The fall armyworm (FAW), Spodoptera frugiperda, is a highly invasive pest that has rapidly spread from its native Americas into much of the Eastern Hemisphere, with a highly homogeneous nuclear genetic background. However, the exact mechanism behind its rapid introduction and propagation remains unclear.

View Article and Find Full Text PDF

The Ala Wai Canal is an artificial waterway in the tourist district of Waikiki in Honolulu, HI. Originally built to collect runoff from industrial, residential, and green spaces dedicated to recreation, the Ala Wai Canal has since experienced potent levels of toxicity due to this runoff entering the watershed and making it hazardous for both marine life and humans at current concentration, including (zebrafish). A community of learners at educations levels from high school to postbaccalaureate from Oahu, HI was connected through the Consortium for Increasing Research and Collaborative Learning Experiences (CIRCLE) distance research program.

View Article and Find Full Text PDF

Identification of proteins dysregulated by COVID-19 infection is critically important for better understanding of its pathophysiology, building prognostic models, and identifying new targets. Plasma proteomic profiling of 4,301 proteins was performed in two independent datasets and tested for the association for three COVID-19 outcomes (infection, ventilation, and death). We identified 1,449 proteins consistently associated in both datasets with any of these three outcomes.

View Article and Find Full Text PDF

Varicose veins represent a common cause of cardiovascular morbidity, with limited available medical therapies. Although varicose veins are heritable and epidemiologic studies have identified several candidate varicose vein risk factors, the molecular and genetic basis remains uncertain. Here we analyzed the contribution of common genetic variants to varicose veins using data from the Veterans Affairs Million Veteran Program and four other large biobanks.

View Article and Find Full Text PDF

The heritability of autism spectrum disorder (ASD), based on 680,000 families and five countries, is estimated to be nearly 80%, yet heritability reported from SNP-based studies are consistently lower, and few significant loci have been identified with genome-wide association studies. This gap in genomic information may reside in rare variants, interaction among variants (epistasis), or cryptic structural variation (SV) and may provide mechanisms that underlie ASD. Here we use a method to identify potential SVs based on non-Mendelian inheritance patterns in pedigrees using parent-child genotypes from ASD families and demonstrate that they are enriched in ASD-risk genes.

View Article and Find Full Text PDF

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like protease (3CLpro) can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, in vitro assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.

View Article and Find Full Text PDF

Identification of the plasma proteomic changes of Coronavirus disease 2019 (COVID-19) is essential to understanding the pathophysiology of the disease and developing predictive models and novel therapeutics. We performed plasma deep proteomic profiling from 332 COVID-19 patients and 150 controls and pursued replication in an independent cohort (297 cases and 76 controls) to find potential biomarkers and causal proteins for three COVID-19 outcomes (infection, ventilation, and death). We identified and replicated 1,449 proteins associated with any of the three outcomes (841 for infection, 833 for ventilation, and 253 for death) that can be query on a web portal ( https://covid.

View Article and Find Full Text PDF

The unprecedented scientific achievements in combating the COVID-19 pandemic reflect a global response informed by unprecedented access to data. We now have the ability to rapidly generate a diversity of information on an emerging pathogen and, by using high-performance computing and a systems biology approach, we can mine this wealth of information to understand the complexities of viral pathogenesis and contagion like never before. These efforts will aid in the development of vaccines, antiviral medications, and inform policymakers and clinicians.

View Article and Find Full Text PDF

Skin is composed of diverse cell populations that cooperatively maintain homeostasis. Up-regulation of the nuclear factor κB (NF-κB) pathway may lead to the development of chronic inflammatory disorders of the skin, but its role during the early events remains unclear. Through analysis of single-cell RNA sequencing data via iterative random forest leave one out prediction, an explainable artificial intelligence method, we identified an immunoregulatory role for a unique paired related homeobox-1 (Prx1) fibroblast subpopulation.

View Article and Find Full Text PDF

Early in the SARS-CoV-2 pandemic, we compared transcriptome data from hospitalized COVID-19 patients and control patients without COVID-19. We found changes in procoagulant and fibrinolytic gene expression in the lungs of COVID-19 patients (Mast et al., 2021).

View Article and Find Full Text PDF

Viruses are an underrepresented taxa in the study and identification of microbiome constituents; however, they play an essential role in health, microbiome regulation, and transfer of genetic material. Only a few thousand viruses have been isolated, sequenced, and assigned a taxonomy, which limits the ability to identify and quantify viruses in the microbiome. Additionally, the vast diversity of viruses represents a challenge for classification, not only in constructing a viral taxonomy, but also in identifying similarities between a virus' genotype and its phenotype.

View Article and Find Full Text PDF

In addition to its essential role in viral polyprotein processing, the SARS-CoV-2 3C-like (3CLpro) protease can cleave human immune signaling proteins, like NF-κB Essential Modulator (NEMO) and deregulate the host immune response. Here, assays show that SARS-CoV-2 3CLpro cleaves NEMO with fine-tuned efficiency. Analysis of the 2.

View Article and Find Full Text PDF

Extensive fibrin deposition in the lungs and altered levels of circulating blood coagulation proteins in COVID-19 patients imply local derangement of pathways that limit fibrin formation and/or promote its clearance. We examined transcriptional profiles of bronchoalveolar lavage fluid (BALF) samples to identify molecular mechanisms underlying these coagulopathies. mRNA levels for regulators of the kallikrein-kinin (C1-inhibitor), coagulation (thrombomodulin, endothelial protein C receptor), and fibrinolytic (urokinase and urokinase receptor) pathways were significantly reduced in COVID-19 patients.

View Article and Find Full Text PDF

Background: A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity to analyze evolutionary adaptation in novel ways. Addition of high-resolution structural information can reveal the functional basis of these processes at the molecular level.

View Article and Find Full Text PDF

Despite SARS-CoV and SARS-CoV-2 being equipped with highly similar protein arsenals, the corresponding zoonoses have spread among humans at extremely different rates. The specific characteristics of these viruses that led to such distinct outcomes remain unclear. Here, we apply proteome-wide comparative structural analysis aiming to identify the unique molecular elements in the SARS-CoV-2 proteome that may explain the differing consequences.

View Article and Find Full Text PDF

Neither the disease mechanism nor treatments for COVID-19 are currently known. Here, we present a novel molecular mechanism for COVID-19 that provides therapeutic intervention points that can be addressed with existing FDA-approved pharmaceuticals. The entry point for the virus is ACE2, which is a component of the counteracting hypotensive axis of RAS.

View Article and Find Full Text PDF

Human population growth and accelerated climate change necessitate agricultural improvements using designer crop ideotypes (idealized plants that can grow in niche environments). Diverse and highly skilled research groups must integrate efforts to bridge the gaps needed to achieve international goals toward sustainable agriculture. Given the scale of global agricultural needs and the breadth of multiple types of omics data needed to optimize these efforts, explainable artificial intelligence (AI with a decipherable decision making process that provides a meaningful explanation to humans) and exascale computing (computers that can perform 10 floating-point operations per second, or exaflops) are crucial.

View Article and Find Full Text PDF

While it has been proposed in several taxa that the mitochondrial genome is associated with adaptive evolution to different climatic conditions, making links between mitochondrial haplotypes and organismal phenotypes remains a challenge. Mitonuclear discordance occurs in the small brown planthopper (SBPH), Laodelphax striatellus, with one mitochondrial haplogroup (HGI) more common in the cold climate region of China relative to another form (HGII) despite strong nuclear gene flow, providing a promising model to investigate climatic adaptation of mitochondrial genomes. We hypothesized that cold adaptation through HGI may be involved, and considered mitogenome evolution, population genetic analyses, and bioassays to test this hypothesis.

View Article and Find Full Text PDF