Publications by authors named "Michael G Siskos"

Article Synopsis
  • High-resolution NMR (nuclear magnetic resonance) spectra are essential for studying the structure and shape of organic molecules, especially those with labile protons.
  • Ma et al. (2024) showed that using 2,2,2-trifluoroacetic acid (TFA) in high concentrations improves NMR signal clarity for nitrogen-containing compounds that undergo structural changes.
  • This commentary reviews previous studies and discusses the potential of TFA to enhance NMR resolution for various organic functional groups, even at lower acid-to-solute ratios, and suggests pathways for clearer structural analysis using these labile protons.
View Article and Find Full Text PDF

Molecular structures, in chloroform and DMSO solution, of the free fatty acids (FFAs) caproleic acid, oleic acid, α-linolenic acid, eicosapentanoic acid (EPA) and docosahexaenoic acid (DHA) are reported with the combined use of NMR and DFT calculations. Variable temperature and concentration chemical shifts of the COOH protons, transient 1D NOE experiments and DFT calculations demonstrate the major contribution of low molecular weight aggregates of dimerized fatty acids through intermolecular hydrogen bond interactions of the carboxylic groups, with parallel and antiparallel interdigitated structures even at the low concentration of 20 mM in CDCl. For the dimeric DHA, a structural model of an intermolecular hydrogen bond through carboxylic groups and an intermolecular hydrogen bond between the carboxylic group of one molecule and the ω-3 double bond of a second molecule is shown to play a role.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations of δ( C) and δ( H) chemical shifts and J( COO H) coupling constants of three model hydroperoxides of the naturally occurring cis-11-OOH and trans-9-OOH isomers of oleate and 9-cis, 11-trans-16-OOH endo hydroperoxide of methyl linolenate are reported. The computational δ(OOH) for various functionals and basis sets were found to be nearly identical for the cis/trans geometric isomers. The chemical shifts of the methine CHOOH protons and carbons, on the contrary, are highly diagnostic for the identification of cis/trans geometric isomerism.

View Article and Find Full Text PDF

NMR and DFT studies of phenol compounds as molecular sensors were carried out to investigate HO/DMSO eutectic mixtures at a molecular level. The experimental H NMR chemical shifts of the OH groups, δ(OH), of phenol, paracoumaric acid, and vanillic acid show maximum deshielding and, thus, hydrogen bond interactions in the range of mole fractions 0.20 < χ(DMSO) < 0.

View Article and Find Full Text PDF

A DFT study of the H NMR chemical shifts, δ(H), of geometric isomers of 18:3 conjugated linolenic acids (CLnAs), hexadecatrienyl pheromones, and model triene-containing compounds is presented, using standard functionals (B3LYP and PBE0) as well as corrections for dispersion interactions (B3LYP-D3, APFD, M06-2X and ωB97XD). The results are compared with literature experimental δ(H) data in solution. The closely spaced "inside" olefinic protons are significantly more deshielded due to short-range through-space HH steric interactions and appear close to or even beyond δ-values of aromatic systems.

View Article and Find Full Text PDF

A combination of selective 1D Total Correlation Spectroscopy (TOCSY) and H-C Heteronuclear Multiple Bond Correlation (HMBC) NMR techniques has been employed for the identification of methyl linolenate primary oxidation products without the need for laborious isolation of the individual compounds. Complex hydroperoxides and diastereomeric -hydroperoxides were identified and quantified. Strongly deshielded C-O-O-H H-NMR resonances of diastereomeric -hydroperoxides in the region of 8.

View Article and Find Full Text PDF

A density functional theory (DFT) study of the H- and C-NMR chemical shifts of the geometric isomers of 18:2 ω-7 conjugated linoleic acid (CLA) and nine model compounds is presented, using five functionals and two basis sets. The results are compared with available experimental data from solution high resolution nuclear magnetic resonance (NMR). The experimental H chemical shifts exhibit highly diagnostic resonances due to the olefinic protons of the conjugated double bonds.

View Article and Find Full Text PDF

Direct activation of aromatic C-H bonds in polyphenolic compounds in a single step, without the use of late transition metals, is demonstrated with the use of D2O and common phosphate buffer at neutral pD and near ambient temperatures. Detailed variable temperature and pD 1H NMR studies were carried out to investigate, for the first time, the Gibbs activation energy (ΔG‡), the activation enthalpy (ΔH‡), and activation entropy (TΔS‡) of H/D exchange reactions of the natural product catechin and the model compounds resorcinol and phloroglucinol. NMR and DFT calculations support a catalytic cycle comprising two water molecules in a keto-enol tautomeric process.

View Article and Find Full Text PDF

Detailed solvent and temperature effects on the experimental H-NMR chemical shifts of the natural products chrysophanol (), emodin (), and physcion () are reported for the investigation of hydrogen bonding, solvation and conformation effects in solution. Very small chemical shift of │Δδ│ < 0.3 ppm and temperature coefficients │Δδ/ΔΤ│ ≤ 2.

View Article and Find Full Text PDF

Numerous gas phase electron diffraction, ultra-fast electron diffraction, X-ray and neutron diffraction experiments on β-dicarbonyl compounds exhibiting enol-enol tautomeric equilibrium, with emphasis on acetylacetone and dibenzoylmethane, have so far been reported with conflicting results on the structural details of the O-HO intramolecular hydrogen bond and resulted in alternative hypotheses on the intramolecular hydrogen bond potential function either a double minimum potential corresponding to two tautomeric forms in equilibrium or a single symmetrical one. We demonstrate herein, firstly, that the DFT calculated OH H NMR chemical shifts of acetylacetone and dibenzoylmethane exhibit a strong linear dependence on the computed OO hydrogen bond length of ∼-50 ppm Å and as a function of the O-HO bond angle of ∼1 ppm per degree, upon the transfer of the hydrogen atom from the ground state toward the transition state. Secondly, the refinement of labile hydrogen atomic positions in intramolecular hydrogen bonds based on the root-mean-square deviation between experimentally determined and DFT calculated H NMR chemical shifts in solution can provide high resolution structures of O-H and O(H)O bond lengths and O-HO bond angles with an accuracy of ∼10 Å and ∼0.

View Article and Find Full Text PDF

The exact knowledge of hydrogen atomic positions of O-H···O hydrogen bonds in solution and in the solid state has been a major challenge in structural and physical organic chemistry. The objective of this review article is to summarize recent developments in the refinement of labile hydrogen positions with the use of: (i) density functional theory (DFT) calculations after a structure has been determined by X-ray from single crystals or from powders; (ii) ¹H-NMR chemical shifts as constraints in DFT calculations, and (iii) use of root-mean-square deviation between experimentally determined and DFT calculated ¹H-NMR chemical shifts considering the great sensitivity of ¹H-NMR shielding to hydrogen bonding properties.

View Article and Find Full Text PDF

The inability to determine precisely the location of labile protons in X-ray molecular structures has been a key barrier to progress in many areas of molecular sciences. We report an approach for predicting hydrogen bond distances beyond the limits of X-ray crystallography based on accurate ab initio calculations of O-HO proton chemical shifts, using a combination of DFT and contactor-like polarizable continuum model (PCM). Very good linear correlation between experimental and computed (at the GIAO/B3LYP/6-311++G(2d,p) level of theory) chemical shifts were obtained with a large set of 43 compounds in CHCl3 exhibiting intramolecular O-HO and intermolecular and intramolecular ionic O-H(-)O hydrogen bonds.

View Article and Find Full Text PDF

Accurate (1)H chemical shifts of the -OH groups of polyphenol compounds can be calculated, compared to experimental values, using a combination of DFT, polarizable continuum model (PCM) and discrete solute-solvent hydrogen bond interactions. The study focuses on three molecular solutes: phenol, 4-methylcatechol and the natural product genkwanin in DMSO, acetone, acetonitrile, and chloroform. Excellent linear correlation between experimental and computed chemical shifts (with the GIAO method at the DFT/B3LYP/6-311++G(2d,p) level) was obtained with minimization of the solvation complexes at the DFT/B3LYP/6-31+G(d) and DFT/B3LYP/6-311++G(d,p) level of theory with a correlation coefficient of 0.

View Article and Find Full Text PDF

Three 2D and 3D photoreactive MOFs of trans,trans-muconic acid with Er(3+) and their corresponding isomorphous Y(3+) phases were synthesized and their photoreactivity was studied as a function of the crystal environment.

View Article and Find Full Text PDF

The assembly of Er(3+) and Y(3+) cations with trans,trans-muconic acid affords a photoreactive 3D microporous MOF that, upon UV irradiation, undergoes a cycloaddition reaction (SCSC up to 55%), with in situ formation of a strained ladderane.

View Article and Find Full Text PDF

Parent radical cations of nonpolar solvents (alkanes and alkyl chlorides) ionize 9-(trimethylsilyl)xanthenes and 9-(trimethylsilyl)fluorenes in a diffusion-controlled electron transfer. The actual electron jump as the deciding part of the process does not require a defined encounter complex, and therefore the reactants are not subjected to any geometry optimization. Considering the molecule dynamics of the donors, bending motions of the silyl group are concerted with fluctuations of the highest occupied molecular orbital electrons.

View Article and Find Full Text PDF

The photochemistry of three structurally very similar triphenylmethylsilanes 1, 2, 3 [p-X-C(6)H(4)-CPh(2)-SiMe(3): X = PhCO, 1; H, ; Ph(OCH(2)CH(2)O)C, 3] is described by means of 248 and 308 nm nanosecond laser flash photolysis (ns-LFP), femtosecond LFP, EPR spectroscopy, emission spectroscopy (fluorescence, phosphorescence), ns-pulse radiolysis (ns-PR), photoproduct analysis studies in MeCN, and X-ray crystallographic analysis of the two key-compounds 1 and 2. The photochemical behavior of 1, 2 and 3 is discussed and compared with that of a fourth one, 4, bearing on the p-position an amino group (X = Me(2)N) and whose detailed photochemistry we reported earlier (J. Org.

View Article and Find Full Text PDF

We describe the synthesis, crystal structure and solid state reactivity of cadmium fumarate dihydrate, which is made up of planar H-bonded metal-organic layers and undergoes, upon irradiation, a topochemical [2 + 2] cycloaddition reaction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong6vkhbubtam042bfclt41vv9nhq0an36): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once