Publications by authors named "Michael G Pollack"

The feasibility of implementing pyrosequencing chemistry within droplets using electrowetting-based digital microfluidics is reported. An array of electrodes patterned on a printed-circuit board was used to control the formation, transportation, merging, mixing, and splitting of submicroliter-sized droplets contained within an oil-filled chamber. A three-enzyme pyrosequencing protocol was implemented in which individual droplets contained enzymes, deoxyribonucleotide triphosphates (dNTPs), and DNA templates.

View Article and Find Full Text PDF

Background: Newborn screening for lysosomal storage diseases (LSDs) has been gaining considerable interest owing to the availability of enzyme replacement therapies. We present a digital microfluidic platform to perform rapid, multiplexed enzymatic analysis of acid α-glucosidase (GAA) and acid α-galactosidase to screen for Pompe and Fabry disorders. The results were compared with those obtained using standard fluorometric methods.

View Article and Find Full Text PDF

Digital microfluidics based on electrowetting is a type of microfluidic platform in which liquids are processed as individual unit-sized droplets that are dispensed from a source, merged together, split apart or transported between locations on demand. These devices are implemented using arrays of surface electrodes to control the shape and position of droplets through the electrowetting effect. A major thrust of digital microfluidics research has been the development of integrated lab-on-a-chip devices to perform clinical in vitro diagnostic assays.

View Article and Find Full Text PDF

Rapid, accurate diagnosis of community-acquired pneumonia (CAP) due to Mycoplasma pneumoniae is compromised by low sensitivity of culture and serology. Polymerase chain reaction (PCR) has emerged as a sensitive method to detect M. pneumoniae DNA in clinical specimens.

View Article and Find Full Text PDF

This paper details the development of a digital microfluidic platform for multiplexed real-time polymerase chain reactions (PCR). Liquid samples in discrete droplet format are programmably manipulated upon an electrode array by the use of electrowetting. Rapid PCR thermocycling is performed in a closed-loop flow-through format where for each cycle the reaction droplets are cyclically transported between different temperature zones within an oil-filled cartridge.

View Article and Find Full Text PDF

A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels.

View Article and Find Full Text PDF

Mixing of analytes and reagents is a critical step in realizing a lab-on-a-chip. However, mixing of liquids is very difficult in continuous flow microfluidics due to laminar flow conditions. An alternative mixing strategy is presented based on the discretization of liquids into droplets and further manipulation of those droplets by electrowetting.

View Article and Find Full Text PDF