Publications by authors named "Michael G Opferman"

Nuclear Pore Complexes (NPCs) are key cellular transporter that control nucleocytoplasmic transport in eukaryotic cells, but its transport mechanism is still not understood. The centerpiece of NPC transport is the assembly of intrinsically disordered polypeptides, known as FG nucleoporins, lining its passageway. Their conformations and collective dynamics during transport are difficult to assess in vivo.

View Article and Find Full Text PDF

Addition of nanoparticles can control the morphologies of grafted polymer layers that are important in a variety of natural and artificial systems. We study the morphologies of grafted polymer layers interacting attractively with nanoparticle inclusions, as a function of particle size and the interaction strength, using self-consistent field theory and Langevin dynamics simulations. We find that the addition of nanoparticles causes distinctive changes in the layer morphology.

View Article and Find Full Text PDF

Control of the morphologies of polymer films and layers by addition of nanosize particles is a novel technique for design of nanomaterials and is also at the core of some important biological processes. In order to facilitate the analysis of experimental data and enable predictive engineering of such systems, solid theoretical understanding is necessary. We study theoretically and computationally the behavior of plane-grafted polymer layers (brushes) in athermal solvent, decorated with small nanoparticle inclusions, using mean field theory and coarse-grained simulations.

View Article and Find Full Text PDF