The synthesis of isotopically labeled organic molecules is vital for drug and agrochemical discovery and development. Carbon isotope exchange is emerging as a leading method to generate carbon-labeled targets, which are sought over hydrogen-based labels due to their enhanced stability in biological systems. While many bioactive small molecules bear carbon-containing stereocenters, direct enantioselective carbon isotope exchange reactions have not been established.
View Article and Find Full Text PDFIsotopically carbon-labeled α-amino acids are valuable synthetic targets that are increasingly needed in pharmacology and medical imaging. Existing preparations rely on early stage introduction of the isotopic label, which leads to prohibitive synthetic costs and time-intensive preparations. Here we describe a protocol for the preparation of C1-labeled α-amino acids using simple aldehyde catalysts in conjunction with [*C]CO (* = 14, 13, 11).
View Article and Find Full Text PDFThe isotopic labelling of small molecules is integral to drug development and for understanding biochemical processes. The preparation of carbon-labelled α-amino acids remains difficult and time consuming, with established methods involving label incorporation at an early stage of synthesis. This explains the high cost and scarcity of C-labelled products and presents a major challenge in C applications (C t = 20 min).
View Article and Find Full Text PDFThe enantioselective generation of quaternary carbon centers remains challenging but is of growing importance for the preparation of functional molecules. Metal catalyzed allylic alkylations of tertiary electrophiles can provide access to these substructures but remain generally incompatible with organometallic benzyl nucleophiles. Here we demonstrate that electron-deficient arylacetates can serve as benzyl nucleophile surrogates to generate enantioenriched acyclic molecules containing a quaternary carbon center via a two-step substitution-decarboxylation process using isoprene monoxide.
View Article and Find Full Text PDFThe Cu-catalyzed oxidative cross-coupling of N- and O-nucleophiles with aryl boronic acids (the Chan-Lam reaction) remains among the most useful approaches to prepare aniline and phenol derivatives. The combination of high chemoselectivity, mild reaction conditions, and the ability to use simple Cu-salts as catalysts makes this process a valuable alternative to aromatic substitutions and Pd-catalyzed reactions of aryl electrophiles (Buchwald-Hartwig coupling). Despite the widespread use of Chan-Lam reactions in synthesis, the analogous carbon-carbon bond forming variant of this process had not been developed prior to our work.
View Article and Find Full Text PDFRationale: A cleavable linker is designed and synthesized for the selective capture of azide-containing compounds. This article presents a proof of concept methodology involving the use of peptide-functionalized aminopropyl silica, on which the peptide is constructed by solid-phase peptide synthesis.
Methods: The peptide linker has L-propargylglycine (Pra) at one terminal end to allow the conjugation of azide-containing molecules by copper assisted azide alkyne cycloaddition, also known as click reaction.