Publications by authors named "Michael G Hoesl"

The noncanonical amino acid S-allyl cysteine (Sac) is one of the major compounds of garlic extract and exhibits a range of biological activities. It is also a small bioorthogonal alkene tag capable of undergoing controlled chemical modifications, such as photoinduced thiol-ene coupling or Pd-mediated deprotection. Its small size guarantees minimal interference with protein structure and function.

View Article and Find Full Text PDF

Genetic code engineering that enables reassignment of genetic codons to non-canonical amino acids (ncAAs) is a powerful strategy for enhancing ribosomally synthesized peptides and proteins with functions not commonly found in Nature. Here we report the expression of a ribosomally synthesized and post-translationally modified peptide (RiPP), the 32-mer lantibiotic lichenicidin with a canonical tryptophan (Trp) residue replaced by the ncAA L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) which does not sustain cell growth in the culture. We have demonstrated that cellular toxicity of [3,2]Tpa for the production of the new-to-nature bioactive congener of lichenicidin in the host Escherichia coli can be alleviated by using an evolutionarily adapted host strain MT21 which not only tolerates [3,2]Tpa but also uses it as a proteome-wide synthetic building block.

View Article and Find Full Text PDF

We have changed the amino acid set of the genetic code of Escherichia coli by evolving cultures capable of growing on the synthetic noncanonical amino acid L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) as a sole surrogate for the canonical amino acid L-tryptophan (Trp). A long-term cultivation experiment in defined synthetic media resulted in the evolution of cells capable of surviving Trp→[3,2]Tpa substitutions in their proteomes in response to the 20,899 TGG codons of the E. coli W3110 genome.

View Article and Find Full Text PDF

To add new tools to the repertoire of protein-based multivalent scaffold design, we have developed a novel dual-labeling strategy for proteins that combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC) and oxime ligation. This method was applied to the conjugation of biotin and β-linked galactose residues to yield an enzymatically active thermophilic lipase, which revealed specific binding to Erythrina cristagalli lectin by SPR binding studies.

View Article and Find Full Text PDF

Expanding and engineering the code simultaneously: This concept was experimentally realized in a single in vivo expression experiment whereby residue-specific, sense codon reassignments Met→Nle/Pro→(4S-F)Pro (code engineering) were combined with position-specific STOP→Bpa read-through by an amber suppressor tRNA (code expansion).

View Article and Find Full Text PDF

The expansion of the genetic code is gradually becoming a core discipline in Synthetic Biology. It offers the best possible platform for the transfer of numerous chemical reactions and processes from the chemical synthetic laboratory into the biochemistry of living cells. The incorporation of biologically occurring or chemically synthesized non-canonical amino acids into recombinant proteins and even proteomes via reprogrammed protein translation is in the heart of these efforts.

View Article and Find Full Text PDF

Expansion of the standard genetic code enables the design of recombinant proteins with novel and unusual properties. Traditionally, such proteins have contained only a single type of noncanonical amino acid (NCAA) in their amino acid sequence. However, recently reported initial efforts demonstrate that it is possible with suppression-based methods to translate two chemically distinct NCAAs into a single recombinant protein by combining the suppression of different termination codons and nontriplet coding units (such as quadruplets).

View Article and Find Full Text PDF

Aequorea victoria green fluorescent protein and its widely used mutants enhanced green fluorescent protein and enhanced cyan fluorescent protein (ECFP) are ideal target proteins to study protein folding. The spectral signals of their chromophores are directly correlated with the folding status of the surrounding protein matrix. Previous studies revealed that tryptophan at position 57 (Trp57) plays a crucial role for the green fluorescent protein's structural and functional integrity.

View Article and Find Full Text PDF

In vivo expression of colored proteins without post-translational modification or chemical functionalization is highly desired for protein studies and cell biology. Cell-permeable tryptophan analogues, such as azatryptophans, have proved to be almost ideal isosteric substitutes for natural tryptophan in cellular proteins. Their unique spectral features, such as markedly red-shifted fluorescence, are transmitted into protein structures upon incorporation.

View Article and Find Full Text PDF

Our long-term goal is the in vivo expression of intrinsically colored proteins without the need for further posttranslational modification or chemical functionalization by externally added reagents. Biocompatible (Aza)Indoles (Inds)/(Aza)Tryptophans (Trp) as optical probes represent almost ideal isosteric substitutes for natural Trp in cellular proteins. To overcome the limits of the traditionally used (7-Aza)Ind/(7-Aza)Trp, we substituted the single Trp residue in human annexin A5 (anxA5) by (4-Aza)Trp and (5-Aza)Trp in Trp-auxotrophic Escherichia coli cells.

View Article and Find Full Text PDF