Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure.
View Article and Find Full Text PDFHybridization and resulting introgression can play both a destructive and a creative role in the evolution of diversity. Thus, characterizing when and where introgression is most likely to occur can help us understand the causes of diversification dynamics. Here, we examine the prevalence of and variation in introgression using phylogenomic data from a large (1300+ species), geographically widespread avian group, the suboscine birds.
View Article and Find Full Text PDFSpecies are being lost at an unprecedented rate during the Anthropocene. Progress has been made in clarifying how species traits influence their propensity to go extinct, but the role historical demography plays in species loss or persistence is unclear. In eastern North America, five charismatic landbirds went extinct last century, and the causes of their extinctions have been heavily debated.
View Article and Find Full Text PDFThe tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1283 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time.
View Article and Find Full Text PDFIndochina and Sundaland are biologically diverse, interconnected regions of Southeast Asia with complex geographic histories. Few studies have examined phylogeography of bird species that span the two regions because of inadequate population sampling. To determine how geographic barriers/events and disparate dispersal potential have influenced the population structure, gene flow, and demographics of species that occupy the entire area, we studied five largely codistributed rainforest bird species: , , , , and .
View Article and Find Full Text PDFRapid diversification limits our ability to resolve evolutionary relationships and examine diversification history, as in the case of the Neotropical cotingas. Here we present an analysis with complete taxon sampling for the cotinga genera Lipaugus and Tijuca, which include some of the most range-restricted (e.g.
View Article and Find Full Text PDFAvian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families.
View Article and Find Full Text PDFGeographic range shifts can cause secondary contact and hybridization between closely related species, revealing mechanisms of species formation and integrity. These dynamics typically play out in restricted geographic regions, but highly vagile species may experience major distributional changes resulting in broad areas of contact. The Glossy Ibis (Plegadis falcinellus) is a dispersive waterbird of the Old World and Australia that colonized eastern North America in the early 19th century and came into contact with the native White-faced Ibis (P.
View Article and Find Full Text PDFThe ecological traits of organisms may predict their genetic diversity and population genetic structure and mediate the action of evolutionary processes important for speciation and adaptation. Making these ecological-evolutionary links is difficult because it requires comparable genetic estimates from many species with differing ecologies. In Amazonian birds, habitat association is an important component of ecological diversity.
View Article and Find Full Text PDFAn implicit assumption of speciation biology is that population differentiation is an important stage of evolutionary diversification, but its significance as a rate-limiting control on phylogenetic speciation dynamics remains largely untested. If population differentiation within a species is related to its speciation rate over evolutionary time, the causes of differentiation could also be driving dynamics of organismal diversity across time and space. Alternatively, geographic variants might be short-lived entities with rates of formation that are unlinked to speciation rates, in which case the causes of differentiation would have only ephemeral impacts.
View Article and Find Full Text PDFHigh tropical species diversity is often attributed to evolutionary dynamics over long timescales. It is possible, however, that latitudinal variation in diversification begins when divergence occurs within species. Phylogeographic data capture this initial stage of diversification in which populations become geographically isolated and begin to differentiate genetically.
View Article and Find Full Text PDFSequence capture and restriction site associated DNA sequencing (RAD-Seq) are two genomic enrichment strategies for applying next-generation sequencing technologies to systematics studies. At shallow timescales, such as within species, RAD-Seq has been widely adopted among researchers, although there has been little discussion of the potential limitations and benefits of RAD-Seq and sequence capture. We discuss a series of issues that may impact the utility of sequence capture and RAD-Seq data for shallow systematics in non-model species.
View Article and Find Full Text PDFSimultaneous examination of evolutionary history in island forms and closely related mainland relatives can provide reciprocal insight into the evolution of island and mainland faunas. The Cocos Flycatcher (Nesotriccus ridgwayi) is a small tyrant flycatcher (Tyrannidae) endemic to Cocos Island, an oceanic island in the eastern Pacific Ocean. We first established its close relationship to the mainland species Mouse-colored Tyrannulet (Phaeomyias murina) using a phylogeny from genome-wide ultraconserved elements and exons.
View Article and Find Full Text PDFComparing inferences among datasets generated using short read sequencing may provide insight into the concerted impacts of divergence, gene flow and selection across organisms, but comparisons are complicated by biases introduced during dataset assembly. Sequence similarity thresholds allow the de novo assembly of short reads into clusters of alleles representing different loci, but the resulting datasets are sensitive to both the similarity threshold used and to the variation naturally present in the organism under study. Thresholds that require high sequence similarity among reads for assembly (stringent thresholds) as well as highly variable species may result in datasets in which divergent alleles are lost or divided into separate loci ('over-splitting'), whereas liberal thresholds increase the risk of paralogous loci being combined into a single locus ('under-splitting').
View Article and Find Full Text PDFThe demographic and phylogeographic histories of species provide insight into the processes responsible for generating biological diversity, and genomic datasets are now permitting the estimation of species histories with unprecedented accuracy. We used a genomic single nucleotide polymorphism (SNP) dataset generated using a RAD-Seq method to investigate the historical demography and phylogeography of a widespread lowland Neotropical bird (Xenops minutus). As expected, we found that prominent landscape features that act as dispersal barriers, such as Amazonian rivers and the Andes Mountains, are associated with the deepest phylogeographic breaks, and also that isolation by distance is limited in areas between these barriers.
View Article and Find Full Text PDFSince the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation.
View Article and Find Full Text PDFComparative genetic studies of non-model organisms are transforming rapidly due to major advances in sequencing technology. A limiting factor in these studies has been the identification and screening of orthologous loci across an evolutionarily distant set of taxa. Here, we evaluate the efficacy of genomic markers targeting ultraconserved DNA elements (UCEs) for analyses at shallow evolutionary timescales.
View Article and Find Full Text PDFPhylogeographic inference has typically relied on analyses of data from one or a few genes to provide estimates of demography and population histories. While much has been learned from these studies, all phylogeographic analysis is conditioned on the data, and thus, inferences derived from data that represent a small sample of the genome are unavoidably tenuous. Here, we demonstrate one approach for moving beyond classic phylogeographic research.
View Article and Find Full Text PDFEvolutionary relationships among birds in Neoaves, the clade comprising the vast majority of avian diversity, have vexed systematists due to the ancient, rapid radiation of numerous lineages. We applied a new phylogenomic approach to resolve relationships in Neoaves using target enrichment (sequence capture) and high-throughput sequencing of ultraconserved elements (UCEs) in avian genomes. We collected sequence data from UCE loci for 32 members of Neoaves and one outgroup (chicken) and analyzed data sets that differed in their amount of missing data.
View Article and Find Full Text PDFAlthough massively parallel sequencing has facilitated large-scale DNA sequencing, comparisons among distantly related species rely upon small portions of the genome that are easily aligned. Methods are needed to efficiently obtain comparable DNA fragments prior to massively parallel sequencing, particularly for biologists working with non-model organisms. We introduce a new class of molecular marker, anchored by ultraconserved genomic elements (UCEs), that universally enable target enrichment and sequencing of thousands of orthologous loci across species separated by hundreds of millions of years of evolution.
View Article and Find Full Text PDF