Soil is a complex and spatially variable material that has a demonstrated potential as a useful evidence class in forensic casework and intelligence operations. Here, the capability to spatially constrain police search areas and prioritise resources by triaging areas as low and high interest is advantageous. Conducted between 2017 and 2021, a forensically relevant topsoil survey (0-5 cm depth; 1 sample per 1 km) was carried out over Canberra, Australia, aiming to document the distribution of chemical elements in an urban/suburban environment, and of acting as a testbed for investigating various aspects of forensic soil provenancing.
View Article and Find Full Text PDFThe airborne fraction of soil (dust) is both ubiquitous in nature and contains localised biological and chemical signatures, making it a potential medium for forensic intelligence. Metabarcoding of dust can yield biological communities unique to the site of interest, similarly, geochemical analyses can uncover elements and minerals within dust that can be matched to a geographic location. Combining these analyses presents multiple lines of evidence as to the origin of dust collected from items of interest.
View Article and Find Full Text PDFEnvironmental DNA (eDNA), elemental and mineralogical analyses of soil have been shown to be specific to their source material, prompting consideration of using the airborne fraction of soil (dust) for forensic intelligence work. Dust is ubiquitous in the environment and is easily transferred to items belonging to a person of interest, making dust analysis an ideal tool in forensic casework. The advent of Massive Parallel Sequencing technologies means metabarcoding of eDNA can uncover bacterial, fungal, and even plant genetic fingerprints in dust particles.
View Article and Find Full Text PDFSoil is a ubiquitous material at the Earth's surface with potential to be a useful evidence class in forensic and intelligence applications. Compositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier Transform InfraRed spectroscopy (FTIR) and geochemical data from X-Ray Fluorescence (XRF; for total major oxides) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS; for both total and aqua regia-soluble trace elements) are obtained from the survey's 268 topsoil samples (0-5 cm depth; 1 sample per km ).
View Article and Find Full Text PDFKnowledge of the mechanisms governing transfer, persistence, and recovery of trace evidence, together with background prevalence in the population of interest, and other task relevant information, is key for the forensic interpretation and reconstruction of what happened at the activity level. Up to now, this informational "toolkit" has largely been developed through empirical forensic studies on specific trace materials such as glass, textile fibers, and soil. Combined with the identified systemic siloing between disciplines, while valuable, such research tends to be very material-dependent, introducing specific parameters and interpretations that may have actually impeded the recognition of underlying foundational factors applicable to most material types.
View Article and Find Full Text PDFCompositional data from a soil survey over North Canberra, Australian Capital Territory, are used to develop and test an empirical soil provenancing method. Mineralogical data from Fourier transform infrared spectroscopy (FTIR) and magnetic susceptibility (MS), and geochemical data from X-ray fluorescence (XRF; for total major oxides) and inductively coupled plasma-mass spectrometry (ICP-MS; for both total and aqua regia-soluble trace elements) are performed on the survey's 268 topsoil samples (0-5 cm depth; 1 sample per km ). Principal components (PCs) are calculated after imputation of censored data and centered log-ratio transformation.
View Article and Find Full Text PDF