Publications by authors named "Michael Frohn"

Covalent inhibition of the KRAS oncoprotein has emerged as a promising therapeutic approach for the treatment of nonsmall cell lung cancer (NSCLC). The identification of KRAS inhibitors has typically relied on the high-throughput screening (HTS) of libraries of cysteine-reactive small molecules or on the attachment of cysteine-reactive warheads to noncovalent binders of KRAS. Such screening approaches have historically been limited in the size and diversity of molecules that could be effectively screened.

View Article and Find Full Text PDF

The (Z)-fluoro-olefin amide bioisosteric replacement is an effective tool for addressing various shortcomings of the parent amide. In an effort to fine tune ADME properties of BACE1 preclinical candidate AM-6494, a series of structurally distinct (Z)-fluoro-olefin containing analogs was developed that culminated in compound 15. Herein, we detail design considerations, synthetic challenges, structure activity relationship (SAR) studies, and in vivo properties of an advanced compound in this novel series of BACE1 inhibitors.

View Article and Find Full Text PDF

KRAS has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-"undruggable" target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRAS to identify inhibitors suitable for clinical development.

View Article and Find Full Text PDF

The efficacy of therapeutic antibodies that induce antibody-dependent cellular cytotoxicity can be improved by reduced fucosylation. Consequently, fucosylation is a critical product attribute of monoclonal antibodies produced as protein therapeutics. Small molecule fucosylation inhibitors have also shown promise as potential therapeutics in animal models of tumors, arthritis, and sickle cell disease.

View Article and Find Full Text PDF

We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure-activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability.

View Article and Find Full Text PDF

A series of aminooxadiazoles was optimized for inhibition of Cdc7. Early lead isoquinoline 1 suffered from modest cell potency (cellular IC50=0.71 μM measuring pMCM2), low selectivity against structurally related kinases, and high IV clearance in rats (CL=18 L/h/kg).

View Article and Find Full Text PDF

We reveal how a N-scan SAR strategy (systematic substitution of each CH group with a N atom) was employed for quinolinone-based S1P(1) agonist 5 to modulate physicochemical properties and optimize in vitro and in vivo activity. The diaza-analog 17 displays improved potency (hS1P(1) RI; 17: EC(50)=0.020 μM, 120% efficacy; 5: EC(50)=0.

View Article and Find Full Text PDF

The sphingosine-1-phosphate-1 receptor (S1P1) and its endogenous ligand sphingosine-1-phosphate (S1P) cooperatively regulate lymphocyte trafficking from the lymphatic system. Herein, we disclose 4-methoxy-N-[2-(trifluoromethyl)biphenyl-4-ylcarbamoyl]nicotinamide (8), an uncommon example of a synthetic S1P1 agonist lacking a polar headgroup, which is shown to effect dramatic reduction of circulating lymphocytes (POC = -78%) in rat 24 h after a single oral dose (1 mg/kg). The excellent potency that 8 exhibits toward S1P1 (EC50 = 0.

View Article and Find Full Text PDF

Inhibition of the PHD2 enzyme has been associated with increased red blood cell levels. From a screening hit, a series of novel hydroxyl-thiazoles were developed as potent PHD2 inhibitors.

View Article and Find Full Text PDF

This paper describes an efficient kinetic resolution process of trisubstituted cyclic olefins via a chiral dioxirane generated in situ from a fructose-derived ketone and Oxone. The substrates presented include a variety of 1,3-disubstituted and 1,6-disubstituted cyclohexenes with the stereogenic centers at allylic positions. A sequential desymmetrization and kinetic resolution of 1,4-cyclohexadienes by the chiral dioxirane was also found to be feasible.

View Article and Find Full Text PDF

A unified, stereocontrolled synthesis of the C(1-19) segments of the lituarines A-C (1-3) has been achieved, highlighted by application of an iterative chemo- and stereoselective trienoate functionalization protocol, a strategy that holds considerable promise for the diversity oriented synthesis of polyketides.

View Article and Find Full Text PDF