Publications by authors named "Michael Floren"

Background: Technology is pivotal in nursing education, with methods such as the flipped classroom, active learning, and patient simulation becoming integral. Despite this, persistent barriers hinder technology's full integration.

Methods: An online survey collected data from nursing faculty members (n = 1761) in prelicensure nursing programs.

View Article and Find Full Text PDF

Importance: Understanding burnout among practitioners in skilled nursing facilities (SNFs) and assisted living facilities (ALFs) while considering contextual factors may lead to practices that enhance therapist and patient satisfaction as well as quality of care.

Objective: To examine productivity standards and burnout in the context of setting and role, as reported by therapy practitioners in geriatric settings, and to explore relationships between productivity standards and perceived ethical pressures.

Design: Cross-sectional online survey with descriptive data.

View Article and Find Full Text PDF

Transporting tissues and organs from the site of donation to the patient in need, while maintaining viability, is a limiting factor in transplantation medicine. One way in which the supply chain of organs for transplantation can be improved is to discover novel approaches and technologies that preserve the health of organs outside of the body. The dominant technologies that are currently in use in the supply chain for biological materials maintain tissue temperatures ranging from a controlled room temperature (+25 °C to +15 °C) to cryogenic (-120 °C to -196 °C) temperatures (reviewed in Criswell et al.

View Article and Find Full Text PDF

Advances in regenerative medicine manufacturing continue to be a priority for achieving the full commercial potential of important breakthrough therapies. Equally important will be the establishment of distribution chains that support the transport of live cells and engineered tissues and organs resulting from these advanced biomanufacturing processes. The importance of a well-managed distribution chain for products requiring specialized handling procedures was highlighted during the COVID-19 pandemic and serves as a reminder of the critical role of logistics and distribution in the success of breakthrough therapies.

View Article and Find Full Text PDF

Academic consulting centers on research and statistics are the bridge between applied researchers and statisticians and thus at the core of university-wide research. The client-centered evaluation focused on investigating the perspective of the clients in university research and statistical consulting center. A mixed-methods methodology was used in this study, specifically a concurrent triangulation design was implemented to have multiple data sources collected and analyzed simultaneously in order to identify areas of overlapping information.

View Article and Find Full Text PDF

Background: Despite improvements in treatment options and techniques, articular cartilage repair continues to be a challenge for orthopedic surgeons. This study provides data to support that the 2-year Cryopreserved, Thin, Laser-Etched Osteochondral Allograft (T-LE Allograft) embodies the necessary viable cells, protein signaling, and extracellular matrix (ECM) scaffold found in fresh cartilage in order to facilitate a positive clinical outcome for cartilage defect replacement and repair.

Methods: Viability testing was performed by digestion of the graft, and cells were counted using a trypan blue assay.

View Article and Find Full Text PDF

Background: Venous thromboembolism chemoprophylaxis (VTE-CHEMO) is often delayed in patients with traumatic brain injury because of the concern for intracranial hemorrhage (ICH) progression. We hypothesize that (1) late time to VTE-CHEMO (≥48 h) is associated with higher incidence of VTE, and (2) VTE-CHEMO use does not correlate with ICH progression.

Materials And Methods: This is a multiinstitutional retrospective study of patients with traumatic brain injury admitted between 2014 and 2016.

View Article and Find Full Text PDF

Introduction: The Severe Sepsis and Septic Shock Early Management Bundle (SEP-1) identifies patients with "severe sepsis" and mandates antibiotics within a specific time window. Rapid time to administration of antibiotics may improve patient outcomes. The goal of this investigation was to compare time to antibiotic administration when sepsis alerts are called in the emergency department (ED) with those called in the field by emergency medical services (EMS).

View Article and Find Full Text PDF

Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo.

View Article and Find Full Text PDF

Present guidelines for emergency intubation in traumatically injured patients recommend rapid sequence intubation (RSI) as the preferred method of airway management but specific pharmacologic agents for RSI remain controversial. To evaluate hemodynamic differences between propofol and other induction agents when used for RSI in trauma patients. Single-center, retrospective review of trauma patients intubated in the emergency department.

View Article and Find Full Text PDF

Understanding how key signaling molecules are coregulated by biochemical agents and physical stimuli during stem cell differentiation is critical but often lacking. Due to the important role of extracellular signal-regulated kinase (ERK), this study has examined its temporal dynamics to determine the coregulation of mechanochemical cues on ERK phosphorylation for smooth muscle cell (SMC) differentiation. To assess ERK1/2 activity, a fluorescence resonance energy transfer-based biosensor was transfected into mesenchymal stem cells.

View Article and Find Full Text PDF

Unlabelled: The ability to assess changes in smooth muscle contractility and pharmacological responsiveness in normal or pathological-relevant vascular tissue environments is critical to enable vascular drug discovery. However, major challenges remain in both capturing the complexity of in vivo vascular remodeling and evaluating cell contractility in complex, tissue-like environments. Herein, we developed a biomimetic fibrous hydrogel with tunable structure, stiffness, and composition to resemble the native vascular tissue environment.

View Article and Find Full Text PDF

Microarrays are powerful experimental tools for high-throughput screening of cellular behavior in multivariate microenvironments. Here, we present a new, facile and rapid screening method for probing cellular behavior in 3D tissue microenvironments. This method utilizes a photoclickable peptide microarray platform developed using electrospun fibrous poly(ethylene glycol) hydrogels and microarray contact printing.

View Article and Find Full Text PDF

Pathological modification of the subendothelial extracellular matrix (ECM) has closely been associated with endothelial activation and subsequent cardiovascular disease progression. To understand regulatory mechanisms of these matrix modifications, the majority of previous efforts have focused on the modulation of either chemical composition or matrix stiffness on 2D smooth surfaces without simultaneously probing their cooperative effects on endothelium function on in vivo like 3D fibrous matrices. To this end, a high-throughput, combinatorial microarray platform on 2D and 3D hydrogel settings to resemble the compositions, stiffness, and structure of healthy and diseased subendothelial ECM has been established, and further their respective and combined effects on endothelial attachment, proliferation, inflammation, and junctional integrity have been investigated.

View Article and Find Full Text PDF

Hydrogels are an attractive class of tunable material platforms that, combined with their structural and functional likeness to biological environments, have a diversity of applications in bioengineering. Several polymers, natural and synthetic, can be used, the material selection being based on the required functional characteristics of the prepared hydrogels. Silk fibroin (SF) is an attractive natural polymer for its excellent processability, biocompatibility, controlled degradation, mechanical properties and tunable formats and a good candidate for the fabrication of hydrogels.

View Article and Find Full Text PDF

Families facing mental health challenges have very limited access to ongoing support. A formative evaluation of Families Healing Together (FHT), a new online family mental health recovery program was conducted using five waves (N=108) of data. Exploratory factor analysis of the measures identified as important to the program theory found strong reliability evidence (α=.

View Article and Find Full Text PDF

Unlabelled: Cell-matrix and cell-biomolecule interactions play critical roles in a diversity of biological events including cell adhesion, growth, differentiation, and apoptosis. Evidence suggests that a concise crosstalk of these environmental factors may be required to direct stem cell differentiation toward matured cell type and function. However, the culmination of these complex interactions to direct stem cells into highly specific phenotypes in vitro is still widely unknown, particularly in the context of implantable biomaterials.

View Article and Find Full Text PDF

Local signals from tissue-specific extracellular matrix (ECM) microenvironments, including matrix adhesive ligand, mechanical elasticity and micro-scale geometry, are known to instruct a variety of stem cell differentiation processes. Likewise, these signals converge to provide multifaceted, mechanochemical cues for highly-specific tissue morphogenesis or regeneration. Despite accumulated knowledge about the individual and combined roles of various mechanochemical ECM signals in stem cell activities on 2-dimensional matrices, the understandings of morphogenetic or regenerative 3-dimenstional tissue microenvironments remain very limited.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate.

View Article and Find Full Text PDF

We present a novel method to fabricate silk fibroin hydrogels using high pressure carbon dioxide (CO(2)) as a volatile acid without the need for chemical cross-linking agents or surfactants. The simple and efficient recovery of CO(2) post processing results in a remarkably clean production method offering tremendous benefit toward materials processing for biomedical applications. Further, with this novel technique we reveal that silk protein gelation can be considerably expedited under high pressure CO(2) with the formation of extensive β-sheet structures and stable hydrogels at processing times less than 2 h.

View Article and Find Full Text PDF
Article Synopsis
  • This research investigates how electric fields can enhance the movement of nutrients and support cell growth in soft, stretchable materials used in biological applications.
  • The study employs a complex mathematical method to analyze how these processes are influenced by electric potential differences and other factors like nutrient consumption and tissue regeneration.
  • Key findings include that applying electric fields affects nutrient availability by adjusting the rate of nutrient transfer and that there are critical thresholds for effective mass transfer that are determined by specific numbers related to reaction speed and material elasticity.
View Article and Find Full Text PDF

The design and tunability of tissue scaffolds, such as pore size and geometry, is crucial to the success of an engineered tissue replacement. Moreover, the mechanical nature of a tissue scaffold should display properties similar to the tissue of interest; therefore, tunability of the foam mechanical properties is desirable. Polymeric foams prepared using supercritical carbon dioxide as a blowing agent has emerged in recent years as a promising technique to prepare porous scaffolds.

View Article and Find Full Text PDF

This research contribution addresses the mechanochemistry of intra-tissue mass transfer for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. The unsteady state reaction-diffusion equation (i.e.

View Article and Find Full Text PDF

This contribution addresses intra-tissue molar density profiles for nutrients, oxygen, growth factors, and other essential ingredients that anchorage-dependent cells require for successful proliferation on biocompatible surfaces. One-dimensional transient and steady state models of the reaction-diffusion equation are solved to correct a few deficiencies in the first illustrative example of diffusion and zeroth-order rates of consumption in tissues with rectangular geometry, as discussed in Ref. [(Griffith and Swartz, 2006) 1].

View Article and Find Full Text PDF