Publications by authors named "Michael Feolo"

Article Synopsis
  • A genome-wide association study (GWAS) was conducted using DNA and RNA sequencing from 2,622 participants in the Framingham Heart Study, leading to the identification of over 6.7 million cis-eQTL and nearly 1.5 million trans-eQTL variant-gene pairs.
  • The study revealed that cis-eQTL variants are enriched for SNPs linked to 815 traits from previous GWAS and are associated with immune functions and various diseases, including cardiovascular risk factors.
  • The eQTL resource developed through this research will be made available for further exploration, enabling causal inference testing for health issues like COVID-19 severity and improving the understanding of the genetic basis of disease.
View Article and Find Full Text PDF

Identifying relevant studies and harmonizing datasets are major hurdles for data reuse. Common Data Elements (CDEs) can help identify comparable study datasets and reduce the burden of retrospective data harmonization, but they have not been required, historically. The collaborative team at PhenX and dbGaP developed an approach to use PhenX variables as a set of CDEs to link phenotypic data and identify comparable studies in dbGaP.

View Article and Find Full Text PDF
Article Synopsis
  • Conducted a genome-wide association study (GWAS) using whole genome sequencing and RNA sequencing from 2,622 participants to create a comprehensive eQTL resource, identifying over 6.7 million variant-gene pairs.
  • Found that a significant number of eQTL variants are linked to immune functions and previous traits, with specific associations established for diseases like cardiovascular issues and COVID-19.
  • This eQTL resource will be accessible to the scientific community via BioData Catalyst, enhancing understanding of gene expression genetics related to various diseases.
View Article and Find Full Text PDF

To create a scientific resource of expression quantitative trail loci (eQTL), we conducted a genome-wide association study (GWAS) using genotypes obtained from whole genome sequencing (WGS) of DNA and gene expression levels from RNA sequencing (RNA-seq) of whole blood in 2622 participants in Framingham Heart Study. We identified 6,778,286 -eQTL variant-gene transcript (eGene) pairs at <5×10 (2,855,111 unique -eQTL variants and 15,982 unique eGenes) and 1,469,754 -eQTL variant-eGene pairs at <1e-12 (526,056 unique -eQTL variants and 7,233 unique eGenes). In addition, 442,379 -eQTL variants were associated with expression of 1518 long non-protein coding RNAs (lncRNAs).

View Article and Find Full Text PDF

Inferring subject ancestry using genetic data is an important step in genetic association studies, required for dealing with population stratification. It has become more challenging to infer subject ancestry quickly and accurately since large amounts of genotype data, collected from millions of subjects by thousands of studies using different methods, are accessible to researchers from repositories such as the database of Genotypes and Phenotypes (dbGaP) at the National Center for Biotechnology Information (NCBI). Study-reported populations submitted to dbGaP are often not harmonized across studies or may be missing.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) usually rely on the assumption that different samples are not from closely related individuals. Detection of duplicates and close relatives becomes more difficult both statistically and computationally when one wants to combine datasets that may have been genotyped on different platforms. The dbGaP repository at the National Center of Biotechnology Information (NCBI) contains datasets from hundreds of studies with over one million samples.

View Article and Find Full Text PDF

Background: Identification of single nucleotide polymorphisms (SNPs) associated with gene expression levels, known as expression quantitative trait loci (eQTLs), may improve understanding of the functional role of phenotype-associated SNPs in genome-wide association studies (GWAS). The small sample sizes of some previous eQTL studies have limited their statistical power. We conducted an eQTL investigation of microarray-based gene and exon expression levels in whole blood in a cohort of 5257 individuals, exceeding the single cohort size of previous studies by more than a factor of 2.

View Article and Find Full Text PDF

Unlabelled: In 2007, the US National Institutes of Health (NIH) introduced the Genome-Wide Association Studies (GWAS) Policy and the database of Genotypes and Phenotypes (dbGaP) to facilitate 'controlled' access to GWAS data based on participants' informed consent. dbGaP has provided 2,221 investigators access to 304 studies, resulting in 924 publications and significant scientific advances. Following on this success, the 2014 Genomic Data Sharing Policy will extend the GWAS Policy to additional data types.

View Article and Find Full Text PDF

The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify.

View Article and Find Full Text PDF

The Database of Genotypes and Phenotypes (dbGap, http://www.ncbi.nlm.

View Article and Find Full Text PDF

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets.

View Article and Find Full Text PDF

Access to genetic data across studies is an important aspect of identifying new genetic associations through genome-wide association studies (GWASs). Meta-analysis across multiple GWASs with combined cohort sizes of tens of thousands of individuals often uncovers many more genome-wide associated loci than the original individual studies; this emphasizes the importance of tools and mechanisms for data sharing. However, even sharing summary-level data, such as allele frequencies, inherently carries some degree of privacy risk to study participants.

View Article and Find Full Text PDF

In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Electronic PCR, OrfFinder, Splign, ProSplign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), IBIS, Biosystems, Peptidome, OMSSA, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets.

View Article and Find Full Text PDF

We describe a novel approach to genetic association analyses with proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs). SFVT analyses are particularly informative for study of highly polymorphic proteins such as the human leukocyte antigen (HLA), given the nature of its genetic variation: the high level of polymorphism, the pattern of amino acid variability, and that most HLA variation occurs at functionally important sites, as well as its known role in organ transplant rejection, autoimmune disease development and response to infection. Further, combinations of variable amino acid sites shared by several HLA alleles (shared epitopes) are most likely better descriptors of the actual causative genetic variants.

View Article and Find Full Text PDF

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, Reference Sequence, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Peptidome, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized data sets.

View Article and Find Full Text PDF

Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways.

View Article and Find Full Text PDF

In addition to maintaining the GenBank nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genomes and related tools, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups (COGs), Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Entrez Probe, GENSAT, Online Mendelian Inheritance in Man (OMIM), Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART) and the PubChem suite of small molecule databases. Augmenting many of the web applications is custom implementation of the BLAST program optimized to search specialized data sets.

View Article and Find Full Text PDF

In addition to maintaining the GenBank(R) nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data available through NCBI's web site. NCBI resources include Entrez, the Entrez Programming Utilities, My NCBI, PubMed, PubMed Central, Entrez Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Electronic PCR, OrfFinder, Spidey, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, Cancer Chromosomes, Entrez Genome, Genome Project and related tools, the Trace, Assembly, and Short Read Archives, the Map Viewer, Model Maker, Evidence Viewer, Clusters of Orthologous Groups, Influenza Viral Resources, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Entrez Probe, GENSAT, Database of Genotype and Phenotype, Online Mendelian Inheritance in Man, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool and the PubChem suite of small molecule databases. Augmenting the web applications are custom implementations of the BLAST program optimized to search specialized data sets.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes over 3 million genetic variations from the International HapMap Project to identify regions of the human genome that have undergone positive natural selection.
  • Using advanced methods, researchers pinpointed over 300 candidate regions, specifically narrowing down to 22 strong areas for further scrutiny.
  • The analysis highlights 26 specific gene variations under positive selection, demonstrating similar evolutionary pressures in related genes across different populations, including regions tied to virus infection and traits like skin pigmentation and hair follicle development.
View Article and Find Full Text PDF

We describe the Phase II HapMap, which characterizes over 3.1 million human single nucleotide polymorphisms (SNPs) genotyped in 270 individuals from four geographically diverse populations and includes 25-35% of common SNP variation in the populations surveyed. The map is estimated to capture untyped common variation with an average maximum r2 of between 0.

View Article and Find Full Text PDF

The National Center for Biotechnology Information has created the dbGaP public repository for individual-level phenotype, exposure, genotype and sequence data and the associations between them. dbGaP assigns stable, unique identifiers to studies and subsets of information from those studies, including documents, individual phenotypic variables, tables of trait data, sets of genotype data, computed phenotype-genotype associations, and groups of study subjects who have given similar consents for use of their data.

View Article and Find Full Text PDF

In the attempt to understand human variation and the genetic basis of complex disease, a tremendous number of single nucleotide polymorphisms (SNPs) have been discovered and deposited into NCBI's dbSNP public database. More than 2.7 million SNPs in the database have genotype information.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionc72j2hpdhrhnqd475de305tghm1mi9dd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once