A comprehensive understanding of human-induced changes to rainfall is essential for water resource management and infrastructure design. However, at regional scales, existing detection and attribution studies are rarely able to conclusively identify human influence on precipitation. Here we show that anthropogenic aerosol and greenhouse gas (GHG) emissions are the primary drivers of precipitation change over the United States.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2024
Global warming increases available sensible and latent heat energy, increasing the thermodynamic potential wind intensity of tropical cyclones (TCs). Supported by theory, observations, and modeling, this causes a shift in mean TC intensity, which tends to manifest most clearly at the greatest intensities. The Saffir-Simpson scale for categorizing damage based on the wind intensity of TCs was introduced in the early 1970s and remains the most commonly used metric for public communication of the level of wind hazard that a TC poses.
View Article and Find Full Text PDFWe demonstrate an indirect, rather than direct, role of quasi-resonant amplification of planetary waves in a summer weather extreme. We find that there was an interplay between a persistent, amplified large-scale atmospheric circulation state and soil moisture feedbacks as a precursor for the June 2021 Pacific Northwest "Heat Dome" event. An extended resonant planetary wave configuration prior to the event created an antecedent soil moisture deficit that amplified lower atmospheric warming through strong nonlinear soil moisture feedbacks, favoring this unprecedented heat event.
View Article and Find Full Text PDFClimate change is already increasing the severity of extreme weather events such as with rainfall during hurricanes. But little research to date investigates if, and to what extent, there are social inequalities in climate change-attributed extreme weather event impacts. Here, we use climate change attribution science paired with hydrological flood models to estimate climate change-attributed flood depths and damages during Hurricane Harvey in Harris County, Texas.
View Article and Find Full Text PDFThe 2020 North Atlantic hurricane season was one of the most active on record, causing heavy rains, strong storm surges, and high winds. Human activities continue to increase the amount of greenhouse gases in the atmosphere, resulting in an increase of more than 1 °C in the global average surface temperature in 2020 compared to 1850. This increase in temperature led to increases in sea surface temperature in the North Atlantic basin of 0.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2021
A large number of recent studies have aimed at understanding short-duration rainfall extremes, due to their impacts on flash floods, landslides and debris flows and potential for these to worsen with global warming. This has been led in a concerted international effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and suggest future directions for research, including: the benefits of convection-permitting climate modelling; towards understanding mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and attributing extreme rainfall change; and the need for international coordination and collaboration.
View Article and Find Full Text PDFThere is no consensus on whether climate change has yet affected the statistics of tropical cyclones, owing to their large natural variability and the limited period of consistent observations. In addition, projections of future tropical cyclone activity are uncertain, because they often rely on coarse-resolution climate models that parameterize convection and hence have difficulty in directly representing tropical cyclones. Here we used convection-permitting regional climate model simulations to investigate whether and how recent destructive tropical cyclones would change if these events had occurred in pre-industrial and in future climates.
View Article and Find Full Text PDFWe perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability.
View Article and Find Full Text PDF