Publications by authors named "Michael F T Koehler"

Tuberculosis is the leading cause of death from an infectious disease, and is caused by Mycobacterium tuberculosis (M.tb). More than 1 billion people worldwide are thought to harbor an M.

View Article and Find Full Text PDF

The effort to modulate challenging protein targets has stimulated interest in ligands that are larger and more complex than typical small-molecule drugs. While combinatorial techniques such as mRNA display routinely produce high-affinity macrocyclic peptides against classically undruggable targets, poor membrane permeability has limited their use toward primarily extracellular targets. Understanding the passive membrane permeability of macrocyclic peptides would, in principle, improve our ability to design libraries whose leads can be more readily optimized against intracellular targets.

View Article and Find Full Text PDF

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts, no new antibiotic class with activity against Gram-negative bacteria has been approved in over 50 years. LepB inhibitors (LepBi) based on the arylomycin class of natural products are a novel class of antibiotics and function by inhibiting the bacterial type I signal peptidase (SPase) in Gram-negative bacteria. One critical aspect of LepBi development involves optimization of the membrane-anchored lipophilic portion of the molecule.

View Article and Find Full Text PDF

The dramatic increase in the prevalence of multi-drug resistant Gram-negative bacterial infections and the simultaneous lack of new classes of antibiotics is projected to result in approximately 10 million deaths per year by 2050. We report on efforts to target the Gram-negative ATP-binding cassette (ABC) transporter MsbA, an essential inner membrane protein that transports lipopolysaccharide from the inner leaflet to the periplasmic face of the inner membrane. We demonstrate the improvement of a high throughput screening hit into compounds with on-target single digit micromolar (μM) minimum inhibitory concentrations against wild-type uropathogenic , , and .

View Article and Find Full Text PDF

Pseudomonas aeruginosa causes life-threatening infections that are associated with antibiotic failure. Previously, we identified the antibiotic G2637, an analog of arylomycin, targeting bacterial type I signal peptidase, which has moderate potency against P. aeruginosa.

View Article and Find Full Text PDF

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria.

View Article and Find Full Text PDF

There is a critical need for new antibacterial strategies to counter the growing problem of antibiotic resistance. In Gram-negative bacteria, the outer membrane (OM) provides a protective barrier against antibiotics and other environmental insults. The outer leaflet of the outer membrane is primarily composed of lipopolysaccharide (LPS).

View Article and Find Full Text PDF

The movement of core-lipopolysaccharide across the inner membrane of Gram-negative bacteria is catalysed by an essential ATP-binding cassette transporter, MsbA. Recent structures of MsbA and related transporters have provided insights into the molecular basis of active lipid transport; however, structural information about their pharmacological modulation remains limited. Here we report the 2.

View Article and Find Full Text PDF

Unlabelled: The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml).

View Article and Find Full Text PDF

Using Sorafenib as a starting point, a series of potent and selective inhibitors of CDK8 was developed. When cocrystallized with CDK8 and cyclin C, these compounds exhibit a Type-II (DMG-out) binding mode.

View Article and Find Full Text PDF

Beginning with promiscuous COT inhibitors, which were found to inhibit CDK8, a series of 6-aza-benzothiophene containing compounds were developed into potent, selective CDK8 inhibitors. When cocrystallized with CDK8 and cyclin C, these compounds exhibit an unusual binding mode, making a single hydrogen bond to the hinge residue A100, a second to K252, and a key cation-π interaction with R356. Structure-based drug design resulted in tool compounds 13 and 32, which are highly potent, kinase selective, permeable compounds with a free fraction >2% and no measurable efflux.

View Article and Find Full Text PDF

Structure- and property-based drug design is an integral part of modern drug discovery, enabling the design of compounds aimed at improving potency and selectivity. However, building molecules using desktop modeling tools can easily lead to poor designs that appear to form many favorable interactions with the protein's active site. Although a proposed molecule looks good on screen and appears to fit into the protein site X-ray crystal structure or pharmacophore model, doing so might require a high-energy small molecule conformation, which would likely be inactive.

View Article and Find Full Text PDF

A-1155463, a highly potent and selective BCL-XL inhibitor, was discovered through nuclear magnetic resonance (NMR) fragment screening and structure-based design. This compound is substantially more potent against BCL-XL-dependent cell lines relative to our recently reported inhibitor, WEHI-539, while possessing none of its inherent pharmaceutical liabilities. A-1155463 caused a mechanism-based and reversible thrombocytopenia in mice and inhibited H146 small cell lung cancer xenograft tumor growth in vivo following multiple doses.

View Article and Find Full Text PDF

Because of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds.

View Article and Find Full Text PDF

Herein we report on the structure-based discovery of a C-2 hydroxyethyl moiety which provided consistently high levels of selectivity for JAK1 over JAK2 to the imidazopyrrolopyridine series of JAK1 inhibitors. X-ray structures of a C-2 hydroxyethyl analogue in complex with both JAK1 and JAK2 revealed differential ligand/protein interactions between the two isoforms and offered an explanation for the observed selectivity. Analysis of historical data from related molecules was used to develop a set of physicochemical compound design parameters to impart desirable properties such as acceptable membrane permeability, potent whole blood activity, and a high degree of metabolic stability.

View Article and Find Full Text PDF

We have recently reported a series of tetrahydroquinazoline (THQ) mTOR inhibitors that produced a clinical candidate 1 (GDC-0349). Through insightful design, we hoped to discover and synthesize a new series of small molecule inhibitors that could attenuate CYP3A4 time-dependent inhibition commonly observed with the THQ scaffold, maintain or improve aqueous solubility and oral absorption, reduce free drug clearance, and selectively increase mTOR potency. Through key in vitro and in vivo studies, we demonstrate that a pyrimidoaminotropane based core was able to address each of these goals.

View Article and Find Full Text PDF

Aberrant activation of the PI3K-Akt-mTOR signaling pathway has been observed in human tumors and tumor cell lines, indicating that these protein kinases may be attractive therapeutic targets for treating cancer. Optimization of advanced lead 1 culminated in the discovery of clinical development candidate 8h, GDC-0349, a potent and selective ATP-competitive inhibitor of mTOR. GDC-0349 demonstrates pathway modulation and dose-dependent efficacy in mouse xenograft cancer models.

View Article and Find Full Text PDF

Selective inhibitors of mammalian target of rapamycin (mTOR) kinase based upon saturated heterocycles fused to a pyrimidine core were designed and synthesized. Each series produced compounds with K(i) < 10 nM for the mTOR kinase and >500-fold selectivity over closely related PI3 kinases. This potency translated into strong pathway inhibition, as measured by phosphorylation of mTOR substrate proteins and antiproliferative activity in cell lines with a constitutively active PI3K pathway.

View Article and Find Full Text PDF

Herein we report the discovery of the C-2 methyl substituted imidazopyrrolopyridine series and its optimization to provide potent and orally bioavailable JAK1 inhibitors with selectivity over JAK2. The C-2 methyl substituted inhibitor 4 exhibited not only improved JAK1 potency relative to unsubstituted compound 3 but also notable JAK1 vs JAK2 selectivity (20-fold and >33-fold in biochemical and cell-based assays, respectively). Features of the X-ray structures of 4 in complex with both JAK1 and JAK2 are delineated.

View Article and Find Full Text PDF

A series of inhibitors of mTOR kinase based on a quaternary-substituted dihydrofuropyrimidine was designed and synthesized. The most potent compounds in this series inhibited mTOR kinase with K(i) < 1.0 nM and were highly (>100×) selective for mTOR over the closely related PI3 kinases.

View Article and Find Full Text PDF

ABT-737 and ABT-263 are potent inhibitors of the BH3 antiapoptotic proteins, Bcl-x(L) and Bcl-2. This class of putative anticancer agents invariantly contains an acylsulfonamide core. We have designed and synthesized a series of novel quinazoline-based inhibitors of Bcl-2 and Bcl-x(L) that contain a heterocyclic alternative to the acylsulfonamide.

View Article and Find Full Text PDF

A series of IAP antagonists based on thiazole or benzothiazole amide isosteres was designed and synthesized. These compounds were tested for binding to the XIAP-BIR3 and ML-IAP BIR using a fluorescence polarization assay. The most potent of these compounds, 19a and 33b, were found to have K(i)'s of 20-30 nM against ML-IAP and 50-60 nM against XIAP-BIR3.

View Article and Find Full Text PDF

SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.

View Article and Find Full Text PDF

[reaction: see text] A new approach to the synthesis of the C ring subunit of known and potential bryostatin analogues is described. The convergent approach, illustrated above, requires fewer steps and offers greater flexibility in rapidly accessing diverse C ring analogues.

View Article and Find Full Text PDF

A series of phosphate ester based small molecules designed to bind tightly to serum albumin were applied to the amino terminus of an anticoagulant peptide in an effort to increase its protein binding in vivo. The tagged peptides exhibited high affinity for both rabbit and human serum albumin when passed through liquid chromatographic columns with serum albumins incorporated into the stationary phase. The peptides were then administered intravenously to rabbits and found to have a greater than 50-fold increase in plasma half life.

View Article and Find Full Text PDF