Herein, we report the heterologous expression in of a Mo-Cu-containing carbon monoxide dehydrogenase (Mo-Cu CODH) from , which resulted in an active protein catalyzing CO oxidation to CO. By supplying the growth medium with NaMoO (Mo) and CuSO (Cu), the Mo-Cu CODH metal cofactors precursors, the expressed L-subunit was found to have CO-oxidation activity even without the M- and S- subunits. This successful expression of CO-oxidizing-capable single L-subunit provides direct evidence of its role as the catalytic center of Mo-Cu CODH that has not been discovered and studied before.
View Article and Find Full Text PDFProtein-encased chromophores that photosensitize the production of reactive oxygen species, ROS, have been the center of recent activity in studies of oxidative stress. One potential attribute of such systems is that the local environment surrounding the chromophore, and that determines the chromophore's photophysics, ideally remains constant and independent of the global environment into which the system is placed. Therefore, a protein-encased sensitizer localized in the mitochondria would arguably have the same photophysics as that protein-encased sensitizer at the plasma membrane, for example.
View Article and Find Full Text PDFGenetically encodable proteins that photosensitize the production of singlet oxygen, O(aΔ), will play an increasingly important role in elucidating mechanisms of cellular processes modulated by reactive oxygen species, ROS, and changes in redox balance. In the development of such tools, it is essential to characterize the oxygen-dependent photophysics of the protein-encased chromophore. Of the O(aΔ)-photosensitizing systems recently developed, a protein-bound derivative of Malachite Green has several desirable features: (1) it absorbs light at wavelengths longer than those typically absorbed by endogenous molecules, and (2) the chromophore becomes a viable sensitizer only when bound to the activating protein.
View Article and Find Full Text PDFCurr Opin Struct Biol
August 2019
Reactive oxygen species (ROS), such as the superoxide anion, the hydroxyl radical and singlet oxygen, can influence cellular processes in many ways. However, the molecular mechanisms of ROS action in cells are still poorly understood. As such, we need to develop tools that can better elucidate ROS behavior in the dynamic environment of a cell.
View Article and Find Full Text PDFOptogenetics has been, and will continue to be, a boon to mechanistic studies of cellular processes. Genetically encodable proteins that sensitize the production of reactive oxygen species (ROS) are expected to play an increasingly important role, particularly in elucidating mechanisms of temporally and spatially dependent cell signaling. However, a substantial challenge in developing such photosensitizing proteins has been to funnel the optical excitation energy into the initial selective production of only one ROS.
View Article and Find Full Text PDFOptogenetic sensitizers that selectively produce a given reactive oxygen species (ROS) constitute a promising tool for studying cell signaling processes with high levels of spatiotemporal control. However, to harness the full potential of this tool for live cell studies, the photophysics of currently available systems need to be explored further and optimized. Of particular interest in this regard, are the flavoproteins miniSOG and SOPP, both of which (1) contain the chromophore flavin mononucleotide, FMN, in a LOV-derived protein enclosure, and (2) photosensitize the production of singlet oxygen, O(aΔ).
View Article and Find Full Text PDFSelected singlet oxygen photosensitizers have been examined from the perspective of obtaining a molecule that is sufficiently stable under conditions currently employed to study singlet oxygen behavior in single mammalian cells. Reasonable predictions about intracellular sensitizer stability can be made based on solution phase experiments that approximate the intracellular environment (e.g.
View Article and Find Full Text PDFHuman DNA topoisomerase I (hTopI) is a nuclear enzyme that catalyzes relaxation of super helical tension that arises in the genome during essential DNA metabolic processes. This is accomplished through a common reaction mechanism shared among the type IB topoisomerase enzymes, including eukaryotic and poxvirus topoisomerase I. The mechanism of hTopI is specifically targeted in cancer treatment using camptothecin derivatives.
View Article and Find Full Text PDFIsatin is an endogenous inhibitor of monoamine oxidase B and is found in human blood and tissue. Increased levels of isatin have been linked to stress and anxiety in rodents and humans; however, the metabolism of isatin in humans is largely unknown. We have developed a fluorescence-based enzymatic assay that can quantify isatin in blood samples.
View Article and Find Full Text PDFSinglet oxygen, O(2)(a(1)Δ(g)), plays a key role in many processes of cell signaling. Limitations in mechanistic studies of such processes are generally associated with the difficulty of controlling the amount and location of O(2)(a(1)Δ(g)) production in or on a cell. As such, there is great need for a system that (a) selectively produces O(2)(a(1)Δ(g)) in appreciable and accurately quantifiable yields and (b) can be localized in a specific place at the suborganelle level.
View Article and Find Full Text PDFPhotochem Photobiol Sci
April 2015
When dissolved in a bulk solvent, bilirubin efficiently removes singlet molecular oxygen, O2(a(1)Δg), through a combination of chemical reactions and by promoting the O2(a(1)Δg)→O2(X(3)Σg(-)) nonradiative transition to populate the ground state of oxygen. To elucidate how such processes can be exploited in the development of a biologically useful fluorescent probe for O2(a(1)Δg), pertinent photophysical and photochemical parameters of bilirubin encapsulated in a protein were determined. The motivation for studying a protein-encapsulated system reflects the ultimate desire to (a) use genetic engineering to localize the probe at a specific location in a living cell, and (b) provide a controlled environment around the chromophore/fluorophore.
View Article and Find Full Text PDFThe high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to a novel family of metalloenzymes that include the bacterial kynurenine formamidase.
View Article and Find Full Text PDFLinear and nonlinear spectroscopic parameters of flavin mononucleotide, FMN, have been examined both experimentally and computationally under conditions in which FMN is (1) solvated in a buffered aqueous solution, and (2) encased in a protein that is likewise solvated in a buffered aqueous solution. The latter was achieved using "miniSOG" which is an FMN-containing protein engineered from Arabidopsis thaliana phototropin 2. Although it is reasonable to expect that the encasing protein could have an appreciable effect, certainly on the nonlinear two-photon absorption cross section, we find that replacing the dynamic aqueous environment with the more static protein environment does little to influence the spectroscopic properties of FMN.
View Article and Find Full Text PDFSelected photochemical and photophysical parameters of flavin mononucleotide (FMN) have been examined under conditions in which FMN is (1) solvated in a buffered aqueous solution, and (2) encased in a protein likewise solvated in a buffered aqueous solution. The latter was achieved using the so-called "mini Singlet Oxygen Generator" (miniSOG), an FMN-containing flavoprotein engineered from Arabidopsis thaliana phototropin 2. Although FMN is a reasonably good singlet oxygen photosensitizer in bulk water (ϕΔ = 0.
View Article and Find Full Text PDFObjective: Uremia markedly increases the risk of atherosclerosis. Thus, effective anti-atherogenic treatments are needed for uremic patients. This study examined effects of non-lipidated recombinant human apoA-I (h-apoA-I) and a recombinant trimeric apoA-I molecule (TripA-I) on lipid metabolism and atherosclerosis in uremic apoE-/- mice.
View Article and Find Full Text PDFAn increased plasma level of the major high-density lipoprotein (HDL) component, apolipoprotein A-I (apoA-I) is the aim of several therapeutic strategies for combating atherosclerotic disease. HDL therapy by direct intravenous administration of apoA-I is a plausible way; however, a fast renal filtration is a major obstacle for this approach. Using protein engineering technology, we have fused apoA-I to the trimerization domain of human tetranectin and thus constructed a high-mass recombinant trimeric apoA-I variant.
View Article and Find Full Text PDFThe low-density lipoprotein receptor-related protein (LRP) interacts with more than 30 ligands of different sizes and structures that can all be replaced by the receptor-associated protein (RAP). The double module of complement type repeats, CR56, of LRP binds many ligands including all three domains of RAP and alpha2-macroglobulin, which promotes the catabolism of the Abeta-peptide implicated in Alzheimer's disease. To understand the receptor-ligand cross-talk, the NMR structure of CR56 has been solved and ligand binding experiments with RAP domain 1 (RAPd1) have been performed.
View Article and Find Full Text PDFBlood coagulation factor Xa (FXa) and Thrombin are well-known serine proteases often used for processing of recombinant fusion proteins, but because they are purified from bovine blood or other animal sources, there is a risk of pathogenic contaminants in the preparation of the proteases. We report here the characterization of a recombinant serine protease produced in Escherichia coli, which can be used as a specific and efficient alternative to FXa and Thrombin as processing protease. This recombinant protease is derived from human granzyme B (GrB).
View Article and Find Full Text PDFGranzyme B (GrB) is a member of a family of serine proteases involved in cytotoxic T-lymphocyte-mediated killing of potentially harmful cells, where GrB induces apoptosis by cleavage of a limited number of substrates. To investigate the suitability of GrB as an enzyme for specific fusion protein cleavage, two derivatives of human GrB, one dependent on blood coagulation factor Xa (FXa) cleavage for activation and one engineered to be self-activating, were recombinantly expressed in Escherichia coli. Both derivatives contain a hexa-histidine affinity tag fused to the C-terminus and expressed as inclusion bodies.
View Article and Find Full Text PDFTetranectin is a plasminogen kringle 4 domain-binding protein present in plasma and various tissue locations. Decreased plasma tetranectin or increased tetranectin in stroma of cancers correlates with cancer progression and adverse prognosis. A possible mechanism through which tetranectin could influence cancer progression is by altering activities of plasminogen or the plasminogen fragment, angiostatin.
View Article and Find Full Text PDFTetranectin is a homotrimeric protein containing a C-type lectin-like domain. This domain (TN3) can bind calcium, but in the absence of calcium, the domain binds a number of kringle-type protein ligands. Two of the calcium-coordinating residues are also critical for binding plasminogen kringle 4 (K4).
View Article and Find Full Text PDFA library of blood coagulation factor Xa (FXa)-trypsin hybrid proteases was generated and displayed on phage for selection of derivatives with the domain "architecture" of trypsin and the specificity of FXa. Selection based on binding to soybean trypsin inhibitor only provided enzymatically inactive derivatives, due to a specific mutation of serine 195 of the catalytic triad to a glycine, revealing a significant selection pressure for proteolytic inactive derivatives. By including a FXa peptide substrate in the selection mixture, the majority of the clones had retained serine at position 195 and were enzymatically active after selection.
View Article and Find Full Text PDFLipoprotein(a) is composed of low density lipoprotein and apolipoprotein(a). Apolipoprotein(a) has evolved from plasminogen and contains 10 different plasminogen kringle 4 homologous domains [KIV(1-110)]. Previous studies indicated that lipoprotein(a) non-covalently binds the N-terminal region of lipoprotein B100 and the plasminogen kringle 4 binding plasma protein tetranectin.
View Article and Find Full Text PDF