Objective: In Hebrew online health communities, participants commonly write medical terms that appear as transliterated forms of a source term in English. Such transliterations introduce high variability in text and challenge text-analytics methods. To reduce their variability, medical terms must be normalized, such as linking them to Unified Medical Language System (UMLS) concepts.
View Article and Find Full Text PDFThe clinical notes in a given patient record contain much redundancy, in large part due to clinicians' documentation habit of copying from previous notes in the record and pasting into a new note. Previous work has shown that this redundancy has a negative impact on the quality of text mining and topic modeling in particular. In this paper we describe a novel variant of Latent Dirichlet Allocation (LDA) topic modeling, Red-LDA, which takes into account the inherent redundancy of patient records when modeling content of clinical notes.
View Article and Find Full Text PDFBackground: Online Consumer Health websites are a major source of information for patients worldwide. We focus on another modality, online physician advice. We aim to evaluate and compare the freely available online expert physicians' advice in different countries, its scope and the type of content provided.
View Article and Find Full Text PDFBackground: The increasing availability of Electronic Health Record (EHR) data and specifically free-text patient notes presents opportunities for phenotype extraction. Text-mining methods in particular can help disease modeling by mapping named-entities mentions to terminologies and clustering semantically related terms. EHR corpora, however, exhibit specific statistical and linguistic characteristics when compared with corpora in the biomedical literature domain.
View Article and Find Full Text PDFSyntactic parsers have made a leap in accuracy and speed in recent years. The high order structural information provided by dependency parsers is useful for a variety of NLP applications. We present a biomedical model for the EasyFirst parser, a fast and accurate parser for creating Stanford Dependencies.
View Article and Find Full Text PDFCurrent approaches to RNA structure prediction range from physics-based methods, which rely on thousands of experimentally measured thermodynamic parameters, to machine-learning (ML) techniques. While the methods for parameter estimation are successfully shifting toward ML-based approaches, the model parameterizations so far remained fairly constant. We study the potential contribution of increasing the amount of information utilized by RNA folding prediction models to the improvement of their prediction quality.
View Article and Find Full Text PDFBackground: The OMIM database is a tool used daily by geneticists. Syndrome pages include a Clinical Synopsis section containing a list of known phenotypes comprising a clinical syndrome. The phenotypes are in free text and different phrases are often used to describe the same phenotype, the differences originating in spelling variations or typing errors, varying sentence structures and terminological variants.
View Article and Find Full Text PDF