In adults, the limbal stem cells (LSC) reside in the limbal region of the eye, at the junction of the cornea and the sclera where they renew the outer epithelial layer of the cornea assuring transparency. LSC deficiencies (LSCD) due to disease or injury account for one of the major causes of blindness. Among current treatments for LSCD, cornea transparency can be restored by providing new LSC to the damaged eye and induced pluripotent stem cells (iPSC) holds great promise as a new advanced cell source.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disease associated with progressive death of midbrain dopamine (DAn) neurons in the substantia nigra (SN). Since it has been proposed that patients with PD exhibit an overall proinflammatory state, and since astrocytes are key mediators of the inflammation response in the brain, here we sought to address whether astrocyte-mediated inflammatory signaling could contribute to PD neuropathology. For this purpose, we generated astrocytes from induced pluripotent stem cells (iPSCs) representing patients with PD and healthy controls.
View Article and Find Full Text PDFBackground: Proteins targeted by the ubiquitin proteasome system (UPS) are identified for degradation by the proteasome, which has been implicated in the development of neurodegenerative diseases. Major histocompatibility complex (MHC) molecules present peptides broken down by the proteasome and are involved in neuronal plasticity, regulating the synapse number and axon regeneration in the central or peripheral nervous system during development and in brain diseases. The mechanisms governing these effects are mostly unknown, but evidence from different compartments of the cerebral cortex indicates the presence of immune-like MHC receptors in the central nervous system.
View Article and Find Full Text PDFIntroduction: Gene therapy holds promise to cure various diseases at the fundamental level. For that, efficient carriers are needed for successful gene delivery. Synthetic 'non-viral' vectors, as cationic polymers, are quickly gaining popularity as efficient vectors for transmitting genes.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
June 2023
Human induced pluripotent stem cells (hiPSC) offer an unprecedented opportunity to generate model systems that facilitate a mechanistic understanding of human disease. Current differentiation protocols are capable of generating cardiac myocytes (hiPSC-CM) and sympathetic neurons (hiPSC-SN). However, the ability of hiPSC-derived neurocardiac co-culture systems to replicate the human phenotype in disease modelling is still in its infancy.
View Article and Find Full Text PDFTissue engineering, including cell transplantation and the application of biomaterials and bioactive molecules, represents a promising approach for regeneration following spinal cord injury (SCI). We designed a combinatorial tissue-engineered approach for the minimally invasive treatment of SCI-a hyaluronic acid (HA)-based scaffold containing polypyrrole-coated fibers (PPY) combined with the RAD16-I self-assembling peptide hydrogel (Corning PuraMatrix™ peptide hydrogel (PM)), human induced neural progenitor cells (iNPCs), and a nanoconjugated form of curcumin (CURC). In vitro cultures demonstrated that PM preserves iNPC viability and the addition of CURC reduces apoptosis and enhances the outgrowth of Nestin-positive neurites from iNPCs, compared to non-embedded iNPCs.
View Article and Find Full Text PDFWe currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal-curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC.
View Article and Find Full Text PDFA key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis is a chronic, progressive, and severe disease with a limited response to currently available therapies. Epithelial cell injury and failure of appropriate healing or regeneration are central to the pathogenesis of idiopathic pulmonary fibrosis. The purpose of this study is to investigate whether intratracheal transplantation of alveolar type II-like cells differentiated from induced pluripotent stem cells can stop and reverse the fibrotic process in an experimental model of bleomycin-induced lung fibrosis in rats.
View Article and Find Full Text PDFThe vascular endothelial growth factor receptor 1 (VEGFR-1) family of receptors is preferentially expressed in endothelial cells, with the full-length and mostly the soluble (sVEGFR-1) isoforms being the most expressed ones. Surprisingly, cancer cells (MDA-MB-231) express, instead, alternative intracellular VEGFR-1 variants. We wondered if these variants, that are no longer dependent on ligands for activation, were expressed in a physiological context, specifically in spermatogenic cells, and whether their expression was maintained in spermatozoa and required for human fertility.
View Article and Find Full Text PDFJ Clin Med
April 2019
In this article, we will discuss the main aspects to be considered to define standard operation procedures (SOPs) for the creation of an induced pluripotent stem cell (iPSC) bank using cord blood (CB)-or similar cell type-bank guidelines for clinical aims. To do this, we adapt the pre-existing SOP for CB banking that can be complementary for iPSCs. Some aspects of iPSC manufacturing and the particular nature of these cells call for special attention, such as the potential multiple applications of the cells, proper explanation to the donor for consent of use, the genomic stability and the risk of genetic privacy disclosure.
View Article and Find Full Text PDFThe use of induced Pluripotent Stem Cells (iPSC) as a source of autologous tissues shows great promise in regenerative medicine. Nevertheless, several major challenges remain to be addressed before iPSC-derived cells can be used in therapy, and experience of their clinical use is extremely limited. In this review, the factors affecting the safe translation of iPSC to the clinic are considered, together with an account of efforts being made to overcome these issues.
View Article and Find Full Text PDFStem Cells
April 2019
When considering the clinical applications of autologous cell replacement therapy of human induced pluripotent stem cells (iPSC)-derived cells, there is a clear need to better understand what the immune response will be before we embark on extensive clinical trials to treat or model human disease. We performed a detailed assessment comparing human fibroblast cell lines (termed F1) reprogrammed into human iPSC and subsequently differentiated back to fibroblast cells (termed F2) or other human iPSC-derived cells including neural stem cells (NSC) made from either retroviral, episomal, or synthetic mRNA cell reprogramming methods. Global proteomic analysis reveals the main differences in signal transduction and immune cell protein expression between F1 and F2 cells, implicating wild type (WT) toll like receptor protein 3 (TLR3).
View Article and Find Full Text PDFIn the eye, the retinal pigment epithelium (RPE) adheres to a complex protein matrix known as Bruch's membrane (BrM). The aim of this study was to provide enriched conditions for RPE cell culture through the production of a BrM-like matrix. Our hypothesis was that a human RPE cell line would deposit an extracellular matrix (ECM) resembling BrM.
View Article and Find Full Text PDFHere, we unravel the mechanism of action of the Ikaros family zinc finger protein Helios (He) during the development of striatal medium spiny neurons (MSNs). He regulates the second wave of striatal neurogenesis involved in the generation of striatopallidal neurons, which express dopamine 2 receptor and enkephalin. To exert this effect, He is expressed in neural progenitor cells (NPCs) keeping them in the G/G phase of the cell cycle.
View Article and Find Full Text PDFSpinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues.
View Article and Find Full Text PDFThe ability to generate inducible pluripotent stem cells (iPSCs) and the potential for their use in treatment of human disease is of immense interest. Autoimmune diseases, with their limited treatment choices are a potential target for the clinical application of stem cell and iPSC technology. IPSCs provide three potential ways of treating autoimmune disease; (i) providing pure replacement of lost cells (immuno-reconstitution); (ii) through immune-modulation of the disease process in vivo; and (iii) for the purposes of disease modeling in vitro.
View Article and Find Full Text PDFCongenital heart disease places a significant burden on the individual, family and community despite significant advances in our understanding of aetiology and treatment. Early research in ischaemic heart disease has paved the way for stem cell technology and bioengineering, which promises to improve both structural and functional aspects of disease. Stem cell therapy has demonstrated significant improvements in cardiac function in adults with ischaemic heart disease.
View Article and Find Full Text PDFThe integrity and normal function of the corneal epithelium are crucial for maintaining the cornea's transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement-cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)-present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision.
View Article and Find Full Text PDFThe use of adult myogenic stem cells as a cell therapy for skeletal muscle regeneration has been attempted for decades, with only moderate success. Myogenic progenitors (MP) made from induced pluripotent stem cells (iPSCs) are promising candidates for stem cell therapy to regenerate skeletal muscle since they allow allogenic transplantation, can be produced in large quantities, and, as compared to adult myoblasts, present more embryonic-like features and more proliferative capacity in vitro, which indicates a potential for more self-renewal and regenerative capacity in vivo. Different approaches have been described to make myogenic progenitors either by gene overexpression or by directed differentiation through culture conditions, and several myopathies have already been modeled using iPSC-MP.
View Article and Find Full Text PDFThe application of induced pluripotent stem cell (iPSC) technologies in cell based strategies, for the repair of the central nervous system (with particular focus on the spinal cord), is moving towards the potential use of clinical grade donor cells. The ability of iPSCs to generate donor neuronal, glial and astrocytic phenotypes for transplantation is highlighted here, and we review recent research using iPSCs in attempts to treat spinal cord injury in various animal models. Also discussed are issues relating to the production of clinical grade iPSCs, recent advances in transdifferentiation protocols for iPSC-derived donor cell populations, concerns about tumourogenicity, and whether iPSC technologies offer any advantages over previous donor cell candidates or tissues already in use as therapeutic tools in experimental spinal cord injury studies.
View Article and Find Full Text PDFSince the discovery of induced pluripotent stem cells (iPSC) in 2006, the symptoms of many human diseases have been reversed in animal models with iPSC therapy, setting the stage for future clinical development. From the animal data it is clear that iPSC are rapidly becoming the lead cell type for cell replacement therapy and for the newly developing field of iPSC-derived body organ transplantation. The first human pathology that might be treated in the near future with iPSC is age-related macular degeneration (AMD), which has recently passed the criteria set down by regulators for phase I clinical trials with allogeneic human embryonic stem cell-derived cell transplantation in humans.
View Article and Find Full Text PDFThe "stem cell" has become arguably one of the most important biological tools in the arsenal of translational research directed at regeneration and repair. It remains to be seen whether every tissue has its own stem cell niche, although relatively recently a large amount of research has focused on isolating and characterizing tissue-specific stem cell populations, as well as those that are able to be directed to transdifferentiate into a variety of different lineages. Traditionally, stem cells are isolated from the viable tissue of embryonic, fetal, or adult living hosts; from "fresh" donated tissues that have been surgically or otherwise removed (biopsies), or obtained directly from tissues within minutes to several hours post mortem (PM).
View Article and Find Full Text PDFThe use of synthetic mRNA as an alternative gene delivery vector to traditional DNA-based constructs provides an effective method for inducing transient gene expression in cell cultures without genetic modification. Delivery of mRNA has been proposed as a safer alternative to viral vectors in the induction of pluripotent cells for regenerative therapies. Although mRNA transfection of fibroblasts, dendritic and embryonic stem cells has been described, mRNA delivery to neurosphere cultures has not been previously reported.
View Article and Find Full Text PDFFor many decades, we have relied on immortalised retinal cell lines, histology of enucleated human eyes, animal models, clinical observation, genetic studies and human clinical trials to learn more about the pathogenesis of retinal diseases and explore treatment options. The recent availability of patient-specific induced pluripotent stem cells (iPSC) for deriving retinal lineages has added a powerful alternative tool for discovering new disease-causing mutations, studying genotype-phenotype relationships, performing therapeutics-toxicity screening and developing personalised cell therapy. This review article provides a clinical perspective on the current and potential benefits of iPSC for managing the most common blinding diseases of the eye: inherited retinal diseases and age-related macular degeneration.
View Article and Find Full Text PDF