Defective tissue fusion during mammalian embryogenesis results in congenital anomalies, such as exencephaly, spina bifida and cleft lip and/or palate. The highly conserved transcription factor grainyhead-like 2 (Grhl2) is a crucial regulator of tissue fusion, with mouse models lacking GRHL2 function presenting with a fully penetrant open cranial neural tube, facial and abdominal clefting (abdominoschisis), and an open posterior neuropore. Here, we show that GRHL2 interacts with the soluble morphogen protein and bone morphogenetic protein (BMP) inhibitor noggin (NOG) to impact tissue fusion during development.
View Article and Find Full Text PDFCleft lip and palate are common birth defects resulting from failure of the facial processes to fuse during development. The mammalian grainyhead-like () genes play key roles in a number of tissue fusion processes including neurulation, epidermal wound healing and eyelid fusion. One family member, , is expressed in the epithelial lining of the first pharyngeal arch in mice at embryonic day (E)10.
View Article and Find Full Text PDFThe highly conserved transcription factor Grainyhead-like 2 (Grhl2) exhibits a dynamic expression pattern in lung epithelium throughout embryonic development. Using a conditional gene targeting approach to delete Grhl2 in the developing lung epithelium, our results demonstrate that Grhl2 plays multiple roles in lung morphogenesis that are essential for respiratory function. Loss of Grhl2 leads to impaired ciliated cell differentiation and perturbed formation of terminal saccules.
View Article and Find Full Text PDF